INTRODUCTION

Bone marrow mononuclear cells (BM-MNCs) have many of the characteristics of stem cells with respect to mesenchymal tissues [1], and contain numerous kinds of primitive cells which can differentiate into hematopoietic cells and endothelial progenitor cells [2]. Several researchers have suggested that the transplantation of bone marrow cells into ischemic tissue may enhance collateral perfusion via the supply of angioblasts and angiogenic ligands [3,4]. Shintani et al. [5] showed that the direct local transplantation of autologous BM-MNCs can be a useful strategy for therapeutic neovascularization of ischemic tissues. More recently, this technique was applied clinically and remarkable therapeutic effects were demonstrated in patients with myocardial infarction [6,7]. On the other hand, it has been reported that numerous factors including vascular endothelial growth factor and basic fibroblast growth factor are associated with the augmentation of angiogenesis [8]. The exact mechanisms of this angiogenesis remain to be clarified.

In the present study, the histological and functional angiogenic effects of BM-MNC implantation were evaluated in a rat ischemic heart model, and the mechanisms of angiogenesis were examined by gene expression analysis.
MATERIALS AND METHODS

This study was approved by the Institutional Animal Care and Use Committee of the Kurume University School of Medicine. All animals received human care in compliance with the European Convention on Animal Care.

Study Group

Male inbred Lewis rats (age: 8-10 weeks old, body weight: 230-260 g) were randomized into the following 3 groups: (i) Controls (n=12), the myocardial infarction (MI) group, in which the rats underwent left anterior descending artery (LAD) ligation only; (ii) the PBS group (n=20), in which 50 µl of phosphate buffered saline (PBS) was injected at 4-6 points in the border zone between myocardial infarction and the intact tissue, after operation using a 29-gauge needle; and (iii) the bone marrow implantation (BMI) group (n=20), in which a total of 5×10⁶ bone marrow cells (BMCs) in 50 µl of PBS was injected in the same manner as for the PBS group.

Preparation of the acute myocardium rat model

Rats were intraperitoneally anesthetized with 50 mg/kg of pentobarbital and intubated with a 16-French intravenous catheter. They were then placed on a volume ventilator (SAR-830/AP small animal ventilator; CWE, Inc., Ardmore, PA, USA) and ventilated with room air at a tidal volume of 10 ml/kg and at a rate of 80 strokes/min. Left thoracotomy was performed through the fourth intercostal space and the LAD was ligated with 7-0 nylon sutures. The lung was expanded and the chest and thoracotomy incisions were closed after the treatment [9,10].

Preparation of rat bone marrow cells

BMCs were harvested from the male inbred Lewis rats by washing tibias and femurs with Dulbecco’s PBS. Bone marrow cell suspension was prepared by gently pressing the bone marrow segments through a fine nylon mesh. The mononuclear cells were then isolated by centrifugation through a Histopaque density gradient centrifugation as described previously by Asahara et al. [11].

Cell characterization

The BM-MNCs were analyzed by fluorescence staining for the endothelial cell marker CD31 (BD PharMingen, (Franklin Lakes, NJ, USA) [12]. The cells were analyzed using a fluorescence-activated cell sorter (FACS) (BD FACS Aria; BD Biosciences, San Jose, CA, USA). Approximately 10,000 cells were screened and the data were expressed as a percentage of positive cells relative to the total cell number.

The cells were cultured on gelatin-coated plates in Medium 199 with 20% fetal bovine serum (FBS), endothelial cell growth supplement, heparin 10 U/ml and antibiotics (Gibco, Gaithersburg, MD, USA) at 37°C under 5% CO₂. Cultures were examined for the development of cell clusters, which is the typical morphological appearance of endothelial precursor cells. On day 7 of culture, we added Dil-acetylated low-density lipoprotein (acLDL) in the culture plate, and observed it 6 hrs later. [5,6,11]

Bone marrow implantation

Immediately after operation, rats with myocardial infarction underwent BM-MNC implantation. After anesthetization with 50 mg/kg of pentobarbital, a total of 5×10⁶ BMCs in 50 µl of phosphate buffered saline (PBS) was injected intramuscularly at 4-6 points in the border zone between the myocardial infarction and the intact tissue using a 29-gauge needle in BMI group. The PBS group received an injection of 50 µl of PBS alone.

Monitoring of the implanted cells in the myocardium with infarction

To determine whether the injected BMCs remained in the border zone between the myocardial infarction and the intact tissue, suspended BMCs were labeled with intracellular fluorescent 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) dye prior to implantation into the infarction and surrounding zone as described by Fujioka et al. [14]. Briefly, purified BMCs were resuspended in PBS containing 20 mmol/l CFSE and incubated for 10 min at 37°C with gentle mixing. After washing 3 times with PBS, the labeled BMCs were injected into the ischemic heart model that was prepared together with the 3 groups used in the present study. The rats were examined using the same procedure for all 3 groups; specifically, their hearts were extracted 7, embedded in optimal cutting temperature (OCT) compound (Tissue-TeK; Ted Pella, Inc., Redding, CA, USA) and snap frozen in liquid nitrogen. The tissue was cut into 5 µm-thick sections and examined by fluorescence microscopy in order to detect the labeled cells [15].

Echocardiography

Transthoracic echocardiography was performed
in the 3 groups under general anesthesia with a 5.0-MHz phased array transducer (ALOKA SSD-5500B; High Technology, Inc., Walpole, MA, USA) before, 1 day after, and 7 or 28 days after the operation. Left ventricular end-diastolic (LVDd) and left ventricular end-systolic diameter (LVDs), ejection fraction (EF), and anterior and posterior wall thickness during the systolic phase were measured in the short axis view at the mid-papillary muscle level. Measurements of 3 consecutive cardiac cycles were averaged and examined.

Immunohistochemistry

Immunohistochemical analysis was performed 7 and 28 days after the operation. Myocardial tissue samples were collected around the infarction zone, embedded in optimal cutting temperature (OCT) compound, snap-frozen in liquid nitrogen, and cut into 5 µm-thick sections. The sections were stained with alkaline phosphatase (ALP) and immunostained with mouse anti-rat CD31 monoclonal antibody. Capillary density was histologically examined in 5 randomly selected fields in the area around the zone of the left ventricular myocardium. Capillaries were identified as tubular structures that were positive for CD31 and ALP.

mRNA expression and microarray analysis

Cardiac tissues for mRNA expression and microarray analyses were examined using 2 samples each from the BMI and PBS groups. Myocardial tissues were obtained 7 days after operation from the resected heart chamber that had been sufficiently irrigated with 4°C PBS injected from the inferior vena cava under anesthesia. The tissue around the infarction zone corresponding to the implantation site was placed on ice, promptly soaked in RNA stabilization solution (RNAlater; Ambion, Inc., Austin, TX, USA), and maintained at –20°C until use.

Five µg of the isolated total RNA was utilized for the synthesis of double-stranded (ds) cDNA using a one-cycle cDNA synthesis kit (Affymetrix, Santa Clara, CA, USA). Biotin-labeled cRNA was then prepared using a GeneChip IVT Labeling Kit (Affymetrix). The purified cRNA was fragmented by incubation in fragmentation buffer at 94°C for 35 min and chilled on ice. The fragmented and labeled cRNA was applied to Rat Expression Array 230A (Affymetrix), which contains approximately 15,000 rat gene probes, hybridized to the probes in the array, and washed and stained following the manufacturer’s instructions (GeneChip Expression Analysis Technical Manual). Probe arrays were scanned using an Agilent GeneArrays Scanner (Agilent Technologies, Palo Alto, CA, USA), and the readings from the quantitative scanning at 570 nm were analyzed by Affymetrix Microarray Suite version 4.0. For the comparisons, hybridization intensities were calculated using a global scaling intensity of the top 100 known genes.

RESULTS

Cell characteristics

BM-MNCs were isolated and analyzed using a FACS. BMCs produce endothelial progenitor cells. In

![Fig. 1. Incubated bone marrow cells of rats. Cell clusters were found to incorporate Di-acetylated LDL (acLDL), which is a characteristic function of endothelial cells and endothelial progenitor cells.](image1)

![Fig. 2. Fluorescence photomicrograph of a cross-section of the border zone between the myocardial infarction and the intact tissue that had been injected with 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled bone marrow cells. Cells appeared in the infarction zone 7 days after injection.](image2)
1×10^6 BM-MNCs, 18.18% of the endothelial progenitor cells were positive for CD31, a cell clusters and attaching cells (AT cells) appeared within 1-3 days. The AT cells formed linear cord-like structures and multiple cell clusters, and incorporated Dil-acetylated LDL (acLDL); these are characteristic functions of endothelial cells and endothelial progenitor cells (Fig. 1).

Implanted cells

CFSE-labeled BMCs were examined by fluorescence microscopy. At post-BMI days 1 and 7, CFSE-labeled BM-MNCs were observed in the border zone between the myocardial infarction and the intact tissue of the myocardium (Fig. 2).

Cardiac function

Echocardiographic assessments of left ventricular

![Graph showing left ventricular end-diastolic diameter (LVDd) and systolic (LVDs) diameters, and ejection fraction (EF) in the 3 groups.](image)

Fig. 3. Left ventricular end-diastolic diameter (LVDd) and systolic (LVDs) diameters, and ejection fraction (EF) in the 3 groups. One day after implantation, the levels in all 3 groups were higher (LVDd) or lower (EF) than pre-infarction levels. At 7 and 28 days after implantation, LVDd values in the bone marrow implantation (BMI) group were lower and EF was higher than in the phosphate buffered saline (PBS) and Control groups.

* *p<0.01, †p<0.05

![Images showing cross-sections of the infarcted myocardium in the BMI (a), the PBS (b), and the Control (c) groups at 28 days post-transplantation.](image)

Fig. 4. Effect of BMI on neovascularization. Vascular endothelial cells were stained with CD31. Light photomicrographs of a cross-section of the infarcted myocardium in the BMI (a), the PBS (b), and the Control (c) groups at 28 days post-transplantation. The circular formations stained in brown are the blood vessels.
function (LVDd, LVDs and EF) are shown in Fig. 3. Cardiac function was found to be depressed 1 day after operation in all groups. LVDd and EF in the BMI group, however, had improved significantly at 7 and 28 days after operation.

Microvessels in the myocardium

The immunohistochemical staining results of CD31 and ALP in the infarcted myocardium are shown in Figs 4 and 5, respectively. The density of microvessels in the area around the infarction zone was significantly higher in the BMI group than in the PBS and Control groups at 28 days after implantation (Fig. 6).

Gene expression

Several alterations in gene expression were found in the BMI group in comparison to the PBS group (n=2 each). The genes with a relatively high frequency of alteration in all 4 examined samples, i.e., genes related to cell proliferation signals (Per2, Gnaq, Btc), oxidative stress (Cype2e1, Mt1a) and transcription factor (Znf498_predicted, Dhx9_predicted, Nr1d1, Bhlhb3, Dbp, Olfms3, Ephx1) are summarized in Table 1.

DISCUSSION

BM-MNCs were injected around the area made ischemic by direct ligation in a rat myocardial infarction model, and their effects were compared to those observed in cases with PBS injection or in cases of myocardial infarction only. Regardless of the treatment, the animals died due to the infarction, however, the injection of BM-MNCs was found to suppress left ventricular dilatation and improve left ventricular contractility. In the chronic ischemic stage (post-BMI 7 and 28 days), angiogenesis was observed in the proximal area of the infarction zone. Gene analysis of the tissues around the infarction zone on post-operative day 7 using gene chips showed the appearance of genes related to transcription, signaling and anti-oxidative stress. To date, the mechanisms of angiogenesis due to cell implantation remains unknown, however, the present findings of gene expression in the implantation zones is an indication that such a mechanism may exist. Though the role and actions of the genes found in our analysis have not yet been fully clarified, these genes are expected to be involved in angiogenesis.

After Asahara et al. [11] reported that vascular endothelial progenitor cells were present in the bone marrow and peripheral blood of humans, therapeutic angiogenesis in which BM-MNCs and peripheral monocytes are transplanted to ischemic tissues has been conducted both experimentally and clinically.
Peripheral monocytes are easily collectable [16], but the obtainable number is not large. BM-MNCs are obtainable in large numbers, and contain many undifferentiated cells related to angiogenesis, such as endothelial progenitor cells, as well as progenitor cells that are not related to blood vessels, e.g., fat and bone cells [17]. This point has been suggested to be a cause of ectopic calcification and other problems at cell transplantation [18]. In the present study, we obtained BM-MNC fraction with a high rate of endothelial progenitor cells by Histopaque density gradient centrifugation (Fig. 2) [5]. On post-operative 7 day, many CFSE-labeled cells were observed in the area around the infarction zone where the BM-MNCs had been implanted, but there was no ectopic calcification. Thus, BM-MNC implantation is safe for therapeutic angiogenesis when the rate of endothelial progenitor cells in BM-MNCs is high.

<table>
<thead>
<tr>
<th>Functional cluster</th>
<th>Gene name</th>
<th>Gene symbol</th>
<th>Gene bank accession</th>
<th>Signal Log2 ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTPase activity signal transducer</td>
<td>guanine nucleotide binding protein, alpha q polypeptide</td>
<td>Gnaq</td>
<td>AW143805</td>
<td>2.72</td>
</tr>
<tr>
<td>Receptor binding epidermal growth factor</td>
<td>betacellulin</td>
<td>Btc</td>
<td>NM022256</td>
<td>1.85</td>
</tr>
<tr>
<td>Signal transducer activity</td>
<td>period homolog 2 (Drosophila)</td>
<td>Per2</td>
<td>NM031678</td>
<td>2.17</td>
</tr>
<tr>
<td>Monoxygenase activity</td>
<td>cytochrome P450, family 2, subfamily e, polypeptide 1</td>
<td>Cyp2e1</td>
<td>NM031543</td>
<td>2.61</td>
</tr>
<tr>
<td>Metal ion binding</td>
<td>metallothionein</td>
<td>Mt1a</td>
<td>AF411318</td>
<td>1.84</td>
</tr>
<tr>
<td>Transcription factor</td>
<td>zinc finger protein 498 (predicted)</td>
<td>Znf498_predicted</td>
<td>BE104397</td>
<td>2.35</td>
</tr>
<tr>
<td>DNA binding RNA polymerase II transcription</td>
<td>D site albumin promoter binding protein</td>
<td>Dbp</td>
<td>AI230048</td>
<td>2.98</td>
</tr>
<tr>
<td>Nucleic acid binding</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 9 (predicted)</td>
<td>Dhx9_predicted</td>
<td>BF398414</td>
<td>1.68</td>
</tr>
<tr>
<td>DNA binding transcription factor activity</td>
<td>nuclear receptor subfamily 1, groupD, member 1</td>
<td>Nrl1d1</td>
<td>M25804</td>
<td>2.83</td>
</tr>
<tr>
<td>Aminopeptidase activity</td>
<td>epoxide hydrolase 1</td>
<td>Ephx1</td>
<td>NM012844</td>
<td>1.65</td>
</tr>
<tr>
<td>DNA binding transcription factor activity</td>
<td>basic helix-loop-helix domain containing, class B3</td>
<td>Bhlhb3</td>
<td>NM133303</td>
<td>1.63</td>
</tr>
<tr>
<td>Protein binding</td>
<td>olfactomedin 3</td>
<td>Olfm3</td>
<td>AF442822</td>
<td>5.16</td>
</tr>
</tbody>
</table>

TABLE 1. Genes with altered expression in the BMI group in comparison to the PBS group
Signal ratio (BMI group/PBS group) is shown as a log2 number
Echocardiography showed that BM-MNC implantation resulted in the suppression of left ventricular dilatation and in significantly good recovery of left ventricular contractility. Thus, the present implantation achieved partial recovery of cardiac function and suppression of the remodeling of the infarction zone, which is consistent with in the results of previous studies [10,19].

The present immunohistochemical results demonstrate that the implanted CFSE-labeled cells had adhered to the tissues around the infarction zone, and that capillary density was high in the BMI group. The implantation of BM-MNCs is thus believed to enhance angiogenesis, and then to promote the suppression of post-infarction remodeling in the myocardium and the improvement of cardiac function.

On the other hand, different mechanisms of angiogenesis due to cell implantation are possible: (i) implanted cells such as endothelial progenitor cells are directly incorporated into the vascular system, and induce vasculogenesis and angiogenesis, or (ii) implanted cells secrete angiogenic factors and inflammatory cytokines, and induce angiogenesis. Therefore, in order to clarify the actual mechanism of angiogenesis by BM-MNC implantation, it is necessary to analyze not only the expression of related genes in the treated zone, but also the comprehensive gene expression profile. In the present study we conducted gene analysis using gene chip technology, which permits expression analysis of approximately 30,000 genes. In addition to the known angiogenic factors, several genes (see below) were found to be expressed at twice or higher levels in the BMI group compared to the PBS group, and this high expression was thought to be attributable to the cell implantation.

The guanine nucleotide binding protein, alpha q polypeptide (Gnaq) is one of the G proteins, such as Type 1 receptor of angiotensin II and endothelin receptor, that are involved in various transmembrane signaling systems. The increase of Gnaq expression observed in the BMI group could be associated with suppressed post-infarct remodeling and with the improvement of cardiac function through an increase in heart contractility and myocardial hypertrophy. In addition, increased Gnaq expression is thought to be involved in the promotion of angiogenesis because angiotensin II promotes the restoration of ischemic vessels [20].

Betacellulin (Btc) is a member of the epithelial growth factor family that regulates cell cycles [15]. This gene is involved in the proliferation of vascular smooth muscle cells, and its increased expression could promote angiogenesis.

Metallothionein (Mtla) is reported to induce antioxidative activity, and hormones and cytokines regulate its expression [21]. In the heart, Mtla expression is thought to correspond to oxidative stress due to myocardial infarction [21]. In the present study, its expression was found to have increased after the implantation of BM-MNCs, and expression was thought to be up-regulated as a defense system against oxidative stress due to myocardial infarction.

The expression of Zinc finger protein 498 (Znf498-predicted) [22], a transcription factor related to angiogenesis and growth, was also increased in the BMI group, which was thought to be the result of the implantation.

An additional 4 genes expressed in the present study are period homolog 2 (Per2); D site albumin promoter binding protein (Dbp); nuclear receptor subfamily 1, group D, member 1 (Nr1d1); and basic helix-loop-helix domain containing, class B3 (Bh1hb3). These genes are thought to be related to circadian rhythm, but their involvement in angiogenesis remains unknown at the time of writing. The other genes expressed in the present study were DEAH box polypeptide 9 (Dhx_9predicted), epoxide hydrolase 1 (Ephx1) and olfactomedin 3 (Olfm3). To the best of our knowledge, their role and functions in angiogenesis and other processes are completely unknown. Future studies are needed to investigate how and whether the combined expression of these genes relate to angiogenesis in the myocardium and to the improvement of cardiac function.

Comparison and evaluation with gene chip technology is extremely useful in studies on unknown mechanisms in tissues in which implantation is expected to have certain effects. In the present study, the number of rats for gene analysis was limited and the sample timing was not optimized. These issues must be addressed in future studies, and the specificity and quantification of the expressed genes must also be examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Northern blot analysis. More detailed investigations on the functions of these expressed genes will contribute significantly to efforts to clarify the exact mechanism of BM-MNC implantation in the ischemic myocardium.

REFERENCES

INTRODUCTION

Hernias in the perineum can be classified as pelvic or perineal. The former includes obturator hernia and sciatic hernia, while the latter includes levator hernia, which is caused by a levator funnel in the levator ani muscles. Hernias may occur in the urogenital hiatus and anorectal hiatus. In this study, we performed fluoroscopic cystocolpoproctography to classify perineal hernias according to the system described by Amano [1] and assessed the role of this technique in the treatment of female pelvic organ prolapse.

MATERIALS AND METHODS

Forty-six women (66 lesions) who presented to our clinic with a chief complaint of perineal prolapse (or a sense of perineal prolapse) over the two-year period from January 2004 to March 2006 were the subjects of this study. Mean age was 75.7 years (21-96).

Barium was administered two hrs before examination to opacify the small bowel. Retrograde cystography with urographin was performed. A urographin-soaked gauze was inserted into the vagina and 200 mL of barium paste was injected into the rectum. Lateral images were taken at rest, during contraction and during straining with the subject sitting on a commode attached to the fluoroscopy table. As shown in Fig. 1, perineal hernias were classified on the basis of x-ray pictures taken during straining (Figs. 2, 3).
RESULTS

Case 1
A 58-year-old woman visited us complaining of anal prolapse. Cystocolpoproctography showed a normal pelvic floor but the rectum was found intussuscepting and protruding from the anus (complete rectal prolapse) (Fig. 4). Rectal fixation was performed surgically.

Case 2
An 83-year-old woman visited us complaining of a sense of perineal descent. Cystocolpoproctography revealed perianal pelvic descent (levator hiatus) complicated by rectal intussusception, indicating the rectum was in a state of massive prolapse with the uterus trapped in the intussuscepting rectum (Fig. 5). Rectal fixation was performed surgically, together with levatorplasty of the anterior rectum and the Moschcowitz procedure.

Case 3
A 78-year-old woman was referred to us complaining of perineal prolapse. Cystocolpoproctography revealed posterior vaginal hernia in which the small bowel prolapsed from behind the uterus and was protruded into the vaginal wall, and massive rectal prolapse in which the small bowel was displaced into the intussuscepting rectum (Fig. 6). Rectal fixation was performed surgically, along with levatorplasty of the anterior rectum, and pelvic floor reconstruction using Composix Mesh.

Case 4
An 82-year-old woman was referred to us complaining of...
plaining of a sense of perineal descent. Cystocolpoproctography revealed posterior vaginal hernia in which the sigmoid colon prolapsed from behind the uterus and was protruded into the vaginal wall (Fig. 7). Rectal fixation was performed surgically, along with pelvic floor reconstruction using Composix Mesh.

Case 5

An 85-year-old woman visited us complaining of perineal prolapse. Cystocolpoproctography revealed rectal intussusception and prolapse through the anus. She was diagnosed as having massive rectal prolapse complicated by enterocele in which the small bowel was trapped in the intussuscepting rectum (Fig. 8). Rectal fixation was performed surgically together with levatorplasty of anterior rectum.

Of the forty-six patients (66 lesions) who present-
ed to our clinic with a chief complaint of perineal prolapse (or a sense of perineal prolapse), 4.5% had posterior rectal sigmoidocele categorized as levator hernia, 19.7% had posterior vaginal hernia, 3.0% had cystic prolapse categorized as urogenital hiatus hernia, 53% had (simple) complete rectal prolapse, 10.6% had massive rectal prolapse and 4.5% had incomplete rectal prolapse categorized as anorectal hiatus hernia (Fig. 1).

DISCUSSION

In 1885, Thomas [2] described five types of vaginal hernia: cystocele, rectocele, vaginal enterocele, pudendal enterocele and perineal enterocele. A new classification similar to the current system was developed by Wilensky and Kaufman [3] in 1940, who categorized vaginal hernia as extravaginal hernia (including urethrocele, cystocele and rectocele), peritoneal vaginal hernia (including anterior, posterior, lateral anterior, lateral posterior and postoperative types), perineal hernia, hidrocele, pudendal hernia and pelvic quasi hernia. Hernias in the perineum can be differentiated as being either pelvic or perineal. The former includes obturator hernia and sciotic hernia. The latter is caused by levator hernia in the levator ani muscles or by hernias through the urogenital or anorectal hiatus. Hernias that pass through the urogenital hiatus include urogenital hiatus hernia, anterior peritoneal hernia and genital hernia. For genital hernia, three subtypes are recognized: extraperitoneal vaginal, peritoneal vaginal and pelvic quasi hernia. Anorectal hiatus hernia is graded relative to rectal prolapse as internal rectal prolapse where the rectum does not stick out of the anus, complete rectal prolapse where the rectum protrudes from the anus and massive rectal prolapse where the herniated rectum contains an extraperitoneal hernia. Diagnoses such as enterocoele or sigmoidocele are made based on the organ that is trapped in the hernia sac.

Magnetic resonance imaging (MRI) is an easy-to-use tool that can measure the degree of descent of the intrapelvic organs. It has been reported that the rate of correct diagnosis by MRI is 66% for rectocele, 70% for cystic prolapse, 42% for uterine prolapse and 87% for enterocoele [4,5]. Dynamic imaging lead to changes in the initial operative plan in 41 percent of patients and was the only modality that identified levator ani hernias. Dynamic cystocolpoproctography identified sigmoidoceles and internal rectal prolapse more often than physical examination or dynamic magnetic resonance [6].

Although it is convenient and of low invasiveness, MRI performed in the lateral decubitus position is inevitably less accurate than cystocolpoproctography performed in the sitting position with straining. The fact that it is a complicated procedure, the sense of embarrassment the patient entertains and other issues remain to be solved for cystocolpoproctography but the technique can be applied not only to morphologic investigation of the intrapelvic organs at rest, during contraction and during straining but also to cystometry and measurement of urine and stool volume over time [7].

Among our patients with perineal hernia, 4.5% had posterior rectal sigmoidocele categorized as levator hernia, 19.7% had posterior vaginal hernia, 3.0% had cystic prolapse categorized as urogenital hiatus hernia, 53.0% had (simple) complete rectal prolapse, 10.6% had massive rectal prolapse, and 4.5% had incomplete rectal prolapse categorized as anorectal hiatus hernia, while 43% of the rectal prolapse patients had complicating lesions in the pelvis. One study examined 73 patients with indefinite anal complaints by means of defecography and detected rectocele in 29%, enterocoele in 18% and sigmoidocele in 5% [8]. In another series, cinedefecography demonstrated pelvic floor abnormalities in 52% of 55 women with rectal prolapse [9]. All of these studies report a similar incidence of intrapelvic complications. These findings indicate the necessity of preoperative cystocolpoproctography to examine for intrapelvic complications in rectal prolapse patients.

Extraperitoneal vaginal hernia categorized as massive rectal prolapse develops in 33% of patients who have been diagnosed from external morphology as having complete rectal prolapse. In these cases, Gant-Miwa procedure, Delorme’s procedure or rectopexy used to correct rectal prolapse may have left the extraperitoneal vaginal hernia unrepaired, possibly resulting in the recurrence of hernia on the anterior rectal lining. This supports our conclusion that cystocolpoproctography is helpful not only for formulating treatment plans, but also for preventing recurrence of rectal prolapse and relieving patients’ complaints.

CONCLUSION

Fluoroscopic cystocolpoproctography is the exam of choice for the functional and morphologic diagnosis of perineal hernia and plays an important role in treatment planning.
REFERENCES

Radiotherapy is the mainstay of treatment in patients with nonsmall cell lung cancer (NSCLC) with locally advanced disease or poor pulmonary function [1-8]. It is well documented that conventionally fractionated radiotherapy for NSCLC to a total dose of 50-60 Gy or more improves locoregional control and survival rate [9]. In addition, recent studies have shown excellent results for stage I lung cancer treated with stereotactic radiotherapy [10-12].

On the other hand, pulmonary toxicity such as radiation pneumonitis (RP) and pulmonary fibrosis commonly develops after radiation therapy. The grade of pulmonary toxicity varies in individual patients so that it may influence the prognosis of patients; severe RP was reported to be an adverse prognostic factor in patients with primary lung cancer [13]. Recently, several studies have shown that inflammatory cytokines and cell adhesion molecules play an important role in radiation-induced pulmonary injury [14]. Plasma transforming growth factor-β levels have been reported to be associated with occurrence of RP [14-16]. Also, RP is reported to be associated with levels of some interleukins and tumor necrosis factors [17,18], which have anti-tumor effects [19,20]. In our experiences, a number of patients with residual mass after radiotherapy developed severe RP, and the residual mass was cov-
ered by dense fibrosis. Thereafter, they experienced no local recurrence. Therefore, we hypothesized that severe RP may contribute to local control by developing severe inflammation around the residual tumor mass in some patients.

In this study, therefore, we attempted to investigate relationship between the grade of RP and prognosis and local control of NSCLC patients who were treated by definitive conventional radiotherapy and were followed at our hospitals; stages and RP grades could be evaluated from both clinical and radiological findings in all of these patients.

MATERIALS AND METHODS

Patients and treatment characteristics

The subjects of this study were 135 patients with histologically-confirmed NSCLC who had been appropriately staged and treated between March 1990 and August 2005, and followed until death or for at least 6 months at our hospitals. There were 112 men and 23 women. The median age of the patients was 69 years (range, 46-87 years). Patients were staged according to the 1997 International Union Against Cancer (UICC) classification system; patients seen before 1997 were restaged according to the system.

No patient underwent surgical resection. All patients were treated using 4, 6 or 10 MV photons from linear accelerators. The patients were generally treated with 1.8-2.0 Gy daily fractions using parallel opposed anteroposterior fields to 40-45 Gy, followed by off-cord oblique fields to 58-75.2 Gy (median, 66 Gy). Patients receiving a total dose of 57 Gy or less were excluded. Sixty-five patients received variable systemic platinum-based chemotherapy.

Evaluation of RP

RP was scored according to the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) acute radiation morbidity scoring criteria (Table 1) [21].

Statistical analysis

Differences in distribution of patient, tumor and treatment characteristics and rates of local relapse between lower-grade RP and higher-grade RP groups were examined by the Mantel-Haenszel \(\chi^2 \) test. Overall survival rates of the patients were calculated from the date of starting radiotherapy using the Kaplan-Meier method, and differences between the curves were examined by the log-rank test. Differences were considered significant when a P value was <0.05. Multivariate analysis of potential prognostic factors was carried out using the Cox proportional hazards model. All analyses were performed using a computer software StatView version 5 (SAS Institute Inc., Cary, NC, USA).

RESULTS

There were 99 deaths during follow-up. Causes of death were cancer in 72 patients, RP-related in 5, and other in 4 patients (traffic accident, emphysema, bacterial pneumonia, and suicide in 1 patient each). The cause of death was unknown in the remaining 18 patients. For all 135 patients, median survival time (MST) was 15 months and overall survival rates were 62%, 21%, and 15% at 1, 3, and 5 years, respectively. The 5-year overall survival rate was 13% for stage I patients, 23% for stage II, 14% for stage IIIA and 10% for stage IIIB.

Of the 135 patients, RP was grade 0 in 5 (3.7%), grade 1 in 71 (53%), grade 2 in 39 (29%), grade 3 in 15 (11%), grade 4 in none (0%) and grade 5 in 5 (3.7%). Relationship between RP grades and patient and tumor characteristics including age, gender, World Health Organization performance status (PS), clinical stage, primary tumor location (upper lobe vs. middle or lower lobe) and tumor histology, total radiation dose, use of chemotherapy, and local control are shown in Tables 2 and 3. There were no differences in any of these characteristics when lower-grade RP groups (grade 0, 1 or 0-2) were compared with higher-grade RP groups (grade 2-5 or 3-5). Also, these tables showed that there were no unbalances in distribution of these

TABLE 1.

Criteria for scoring radiation pneumonitis (RTOG/EORTC)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Signs and symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Mild symptoms; dry cough or dyspnea on exertion</td>
</tr>
<tr>
<td></td>
<td>Slight radiographic appearances</td>
</tr>
<tr>
<td>2</td>
<td>Persistent cough requiring narcotic antitussive agent/</td>
</tr>
<tr>
<td></td>
<td>dyspnea with minimal effort but not at rest</td>
</tr>
<tr>
<td></td>
<td>Patchy radiographic appearances</td>
</tr>
<tr>
<td>3</td>
<td>Severe cough unresponsive to narcotic antitussive or</td>
</tr>
<tr>
<td></td>
<td>dyspnea at rest/intermittent oxygen may be required</td>
</tr>
<tr>
<td></td>
<td>Dense radiographic changes</td>
</tr>
<tr>
<td>4</td>
<td>Severe respiratory insufficiency/continuous oxygen</td>
</tr>
<tr>
<td></td>
<td>or assisted ventilation required</td>
</tr>
<tr>
<td>5</td>
<td>Death directly related to radiation toxicity</td>
</tr>
</tbody>
</table>

Kurume Medical Journal Vol. 54, No. 3, 4, 2007
factors between lower-grade RP groups (grade 0, 1 or 0-2) and higher-grade RP groups (grade 2, 3 or 3) for comparison of their prognoses.

Figure 1 shows survival curves for the 130 patients, excluding 5 patients with grade 5 RP, according to the grade of RP (grade 0 or 1 vs. grade 2 or 3). There was no difference in prognosis of the patients. Figure 2 shows survival curves for patients with grade 0-2 RP and those with grade 3 RP; again, there was no difference in prognosis of the patients ($P=0.10$). Figure 3 shows survival curves for stage III patients with grade 0-2 RP and those with grade 3 RP, and there was no difference in prognosis of the patients ($P=0.33$).

Table 4 summarizes MST and 3-year survival rate (3-YSR) according to 9 potential prognostic factors (age, gender, PS, stage, tumor location, histology, total radiation dose, use of chemotherapy, and RP grade), excluding 5 patients with grade 5 RP. Patients with upper lobe tumors had better survival than those with middle or lower lobe tumors, and stage I or II patients tended to do better than stage III patients ($P=0.060$). Patients receiving higher doses (above median: >66 Gy) had better survival than those receiving lower doses. Multivariate analysis was carried out for 4 factors with $P \leq 0.1$ (stage, tumor location, radiation dose and RP grade); clinical stage and radiation dose were found to have significant influences on patient survival, whereas tumor location and RP grade were not. Figure 4 shows overall survival curves according to the total radiation dose, including 5 patients with grade 5 RP. In this analysis too, patients receiving higher doses did better than those receiving lower doses.

Local control status was known in 110 patients excluding 5 patients with grade 5 RP. We could not determine the exact date of local recurrence in many patients, so Kaplan-Meier analysis was not possible. Local relapse was observed in 34 of 67 patients (51%) with grade 0 or 1 RP, while it was seen in 20 of 43 patients (47%) with grade 2 or 3 RP ($P=0.61$). Also, local relapse was seen in 52 of 101 patients (51%) with grade 0-2 RP and in only 2 of 9 patients (22%) with grade 3 RP; the difference was, however, not sig-

TABLE 2.
Patient and tumor characteristics versus grades of radiation pneumonitis

<table>
<thead>
<tr>
<th></th>
<th>Grade 0-2</th>
<th>Grade 3-5</th>
<th>P</th>
<th>Grade 3</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>68±9</td>
<td>71±8</td>
<td>0.24</td>
<td>69±6</td>
<td>0.82</td>
</tr>
<tr>
<td><70</td>
<td>58</td>
<td>9</td>
<td>0.82</td>
<td>8</td>
<td>0.83</td>
</tr>
<tr>
<td>≥70</td>
<td>57</td>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>95</td>
<td>17</td>
<td>1.0</td>
<td>12</td>
<td>0.80</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 1</td>
<td>92</td>
<td>16</td>
<td>1.0</td>
<td>11</td>
<td>1.00</td>
</tr>
<tr>
<td>2, 3, 4</td>
<td>23</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, II</td>
<td>21</td>
<td>6</td>
<td>0.36</td>
<td>5</td>
<td>0.36</td>
</tr>
<tr>
<td>III</td>
<td>94</td>
<td>14</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper lobe</td>
<td>77</td>
<td>13</td>
<td>1.0</td>
<td>9</td>
<td>0.81</td>
</tr>
<tr>
<td>Middle or lower lobe</td>
<td>38</td>
<td>7</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Histological diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell</td>
<td>63</td>
<td>10</td>
<td>0.88</td>
<td>6</td>
<td>0.42</td>
</tr>
<tr>
<td>Adeno or large cell</td>
<td>52</td>
<td>10</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total radiation dose (Gy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤66</td>
<td>64</td>
<td>11</td>
<td>0.95</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>>66</td>
<td>51</td>
<td>9</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>57</td>
<td>8</td>
<td>0.58</td>
<td>8</td>
<td>0.14</td>
</tr>
<tr>
<td>No</td>
<td>58</td>
<td>12</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Local control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>52</td>
<td>2</td>
<td>0.16</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td>No</td>
<td>49</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No patients had grade 4 RP.
Fig. 1. Overall survival curves according to the grade of RP (grade 0, 1 vs 2, 3). There was no significant difference in survival between the two groups (P=0.31).

Fig. 2. Overall survival curves according to the grade of RP (grade 0-2 vs 3). The difference between the two groups was not significant (P=0.10).
Fig. 3. Overall survival curves for stage III patients according to the grade of RP (grade 0-2 vs 3). The difference between the two groups was not significant ($P=0.33$).

Fig. 4. Overall survival curves according to the total radiation dose. The difference between the two groups was significant ($P=0.049$).

TABLE 4.

Median survival time and 3-year survival rate according to potential prognostic factors

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>MST (months)</th>
<th>3-YSR (%)</th>
<th>P</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Univariate</td>
<td>Multivariate</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><70</td>
<td>67</td>
<td>14.5</td>
<td>23</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>≥70</td>
<td>63</td>
<td>17</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>107</td>
<td>18</td>
<td>21</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>23</td>
<td>13.5</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 1</td>
<td>103</td>
<td>24</td>
<td>24</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>27</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, II</td>
<td>27</td>
<td>24.5</td>
<td>19</td>
<td>0.060</td>
<td>0.034</td>
</tr>
<tr>
<td>III</td>
<td>103</td>
<td>13</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary tumor location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper lobe</td>
<td>86</td>
<td>16</td>
<td>26</td>
<td>0.048</td>
<td>0.13</td>
</tr>
<tr>
<td>Middle or lower lobe</td>
<td>44</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histological diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell</td>
<td>69</td>
<td>12.5</td>
<td>19</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Adeno or large cell</td>
<td>61</td>
<td>16.5</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total radiation dose (Gy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤66</td>
<td>72</td>
<td>15</td>
<td>14</td>
<td>0.049</td>
<td>0.024</td>
</tr>
<tr>
<td>>66</td>
<td>58</td>
<td>15.5</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>65</td>
<td>16.5</td>
<td>19</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>65</td>
<td>13.5</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>115</td>
<td>16</td>
<td>23</td>
<td>0.10</td>
<td>0.083</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No patients had grade 4 RP. Five patients with grade 5 RP were excluded.
significant ($P=0.16$).

Five patients with grade 5 RP had received radiation doses of 60, 60, 66, 70, and 72 Gy, respectively. Their survival time was only 2, 2, 3.5, 4, and 2.5 months, respectively. Although no local tumor regrowth was noted in any of the patients at the time of their death, observation period was considered to be too short to evaluate local control in these patients.

DISCUSSION

We analyzed treatment outcome in 135 patients with stage I-III NSCLC treated by definitive radiotherapy. The 5-year overall survival rate was 15%, which is not better than previously reported results [3-5]. This may not be surprising because 80% of the patients had stage III disease. The overall survival rates for stage I patients (13% at 5 years) were apparently low as compared with the recently reported results of stereotactic radiotherapy [10-12]. This low survival rate was partly due to a relatively large number of intercurrent death in stage I patients, seen in 8 of 13 patients. Nevertheless, it seems clear that the results of stereotactic irradiation for stage I patients are far better than those for conventional radiotherapy.

RP is one of the most common and important complications in patients with lung cancer who undergo radiation therapy to the thorax. The incidence of severe RP ranges from approximately 5% to 15% with radiotherapy or chemoradiotherapy [22-24]. In the present study, 15% of the patients had grade 3 or higher RP, and 5 (3.7%) died of severe RP. The incidence of grade 3-5 RP in the present study is not remarkably different from those reported previously, although the incidence of grade 5 RP appears slightly higher [13,25].

In several studies, age, gender, PS, clinical stage, primary tumor location (upper lobe vs. middle or lower lobe), tumor histology, and use of chemotherapy have been reported to be associated with the incidence of severe RP [26-29]. However, no significant relationship was observed in the present study between the grade of RP and patient, tumor or treatment characteristics. Analysis of larger numbers of patients may prove subtle differences regarding association of these factors with the severity of RP. Radiation field size could not be evaluated, but RP grade distribution was not correlated with tumor stage.

We found no significant difference in survival between patients with grade 0 or 1 RP and those with grade 2 or 3 RP. Also, no significant difference was found between patients with grade 0-2 RP and those with grade 3 RP. This was also true when only stage III patients were analyzed. These results are in contrast to those reported by Inoue et al. [13] who showed that severe RP (RTOG grade 3 or 4) was associated with worse prognosis. In our experiences, severe RP, whenever it recovers, does not seem to adversely affect the patient prognosis. However, our hypothesis that severe but recoverable RP might contribute to improved prognosis was not supported. On the other hand, only 2 of 9 patients with grade 3 RP developed local recurrence. In future, further analysis with respect to local tumor control with larger numbers of patients, preferably in a prospective fashion, may more clearly answer our question.

If high-grade inflammation associated with severe RP does not contribute to improved tumor control, strategies to prevent RP should be of clinical importance. Recently, it has been shown that protective effect of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II (All) type 1 receptor blocker from RP is a topic of considerable interest [14,23]. Several groups reported that ACE inhibitors especially captopril and All type 1 receptor blocker were effective in protecting lungs from RP and the development of lung fibrosis in rat radiation injury [30-32]. The possibility remains that administration of ACE inhibitors and All type 1 receptor blocker might have two beneficial effects: control of radiation-induced side effects and control of hypertension in the future.

CONCLUSION

High-grade RP did not appear to affect prognosis of patients with NSCLC undergoing definitive radiotherapy. However, further prospective studies with larger number of patients appear to be warranted to draw a definite conclusion.

REFERENCES

3. Schild SE, Wong WW, Vora SA, Halyard MY, Northfelt DW et al. The long-term results of a pilot study of three times a day radiotherapy and escalating doses of daily cis

Kurume Medical Journal Vol. 54, No. 3, 4, 2007
A Life Span Study of Exploratory Eye Movements in Healthy Subjects:
Gender Differences and Affective Influences

SACHIKO NISHIURA, YOUKO NAKASHIMA*, KEIICHIRO MORI, TAKAYUKI KODAMA*, SATOSHI HIRAI*, TAKATSUGU KURAKAKE*, CHIYOMI EGAMI**, AND KIICHIRO MORITA*

Department of Neuropsychiatry, Kurume University School of Medicine, *Cognitive and Molecular Research Institute of Brain Diseases and ** Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume 830-0011, Japan

Received 18 April 2007, accepted 30 November 2007

Edited by RYOJI YAMAKAWA

Summary: To evaluate age and gender differences as well as effects of affection, we examined exploratory eye movements. Exploratory eye movements were recorded in healthy subjects (57 women and 57 men) ranging from 9 to 74 years. All subjects were divided into three groups as pre puberty, young, and older adults to study the influences of age and gonadal hormones. Exploratory eye movements were analyzed for total eye scanning length (TESL), and total numbers of gaze points (TNGP) as subjects viewed neutral or affectively charged pictures. TESL and TNGP in older adults were significantly larger than that in both pre puberty and young adults for crying babies. TESL and TNGP in pre puberty were significantly smaller than that in both young and older adults for circles. TESL and TNGP in pre puberty were significantly smaller than that in older adults for smiling babies. Pre puberty and young adult of both genders for crying babies showed significantly shorter TESL than for when smiling babies. When viewing circles, young adult women had shorter TESL than men. TNGP in young adult women was smaller than in men for circles or crying babies. TNGP of young adult women in the visual right field was significantly smaller than in men. TNGP for crying babies was significantly smaller than that for smiling babies in young adults of both genders for the left field. Exploratory eye movements thus are a useful marker of visual cognitive function. Gender differences were limited to younger adults, suggesting influences of gonadal hormones.

Key words exploratory eye movements, gender difference, affective stimuli, laterality, visual cognition

INTRODUCTION

Eye movements have attracted attention as biologic markers. For example, patients with psychiatric disorders such as schizophrenia or affection have been compared with healthy subjects [1-3]. Holzman et al. [1] reported that schizophrenic patients have less global accuracy smooth pursuit and lower pursuit gain than normal control subjects.

In studies of exploratory eye movements, subjects are examined with an eye-mark recorder as they view several pictures while the points of gaze are analyzed in terms of several elements [3]. This assessment method, considered to reflect abnormalities of eye movements and visual information processing in natural settings, is a useful psycho-physiological marker of visual cognitive function that first requires extensive evaluation in healthy controls, concerning age and gender differences [4,5]. The authors suggested that exploratory eye movements in young adult women have been demonstrated to have a more limited eye movement range, with longer maintenance of gaze in

Original Contribution

Corresponding author: Kiichiro Morita, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan. Tel: 0942-31-7581 Fax: 0942-31-7911 E-mail: kiichiro@med.kurume-u.ac.jp

Abbreviations: TESL, total eye scanning length; TNGP, total numbers of gaze points.
a given direction, than men of similar age, suggesting a possible gonadal hormonal influences [4,5]. One reason why such analyses are important involves, reported gender differences in aspects of brain function. Men have been found perform better than women in certain spatial, motor [6-8], and language tasks [9] as well as in scanning the visual field [10]. Gender differences in event related potentials (ERPs) concerning visual information processing have been reported [11-13] and also might involve gonadal hormones [6,14,15].

Affect and the following emotion are basically important between human relationships in human life events. Because, a negative affection as cry, fear should obstruct life events, however, a positive affection as pleasure, happy should facilitate of life behavior. The effects of affective stimuli have been reported in event-related potentials, especially P300 components [13,16]. Those authors reported the P300 amplitude was larger for the negative affection as angry or sad than that for the positive affection as pleasure or neutral stimuli and suggested that event-related potentials was useful biological marker to evaluate the effects of affection. Thus, it is important to study the effects of affections on the cognitive function for exploratory eye movements as one of the biological marker. Indeed, the exploratory eye movement was inhibited in depressive patients [17], because of depressive emotion.

The present study was performed to examine whether gender differences of exploratory eye movements were observed or not, during the three life phases as the pre puberty (children), puberty (young adult) and post puberty (elder adults) of the healthy, and the affective stimuli (smiling and crying babies). The second aim of the present study was, whether or not there is any gender and/or age difference for affective stimulus.

MATERIALS AND METHODS

Subjects

A group of 114 healthy paid volunteers (9 to 74 years) (mean age ± SD, 35.9±19.3 years). All subjects were divided into three groups as pre puberty (12 boys and 12 girls: 10.2±0.9 and 10.5±1.4, respectively), young adults (27 men and 27 women: 30.5±6.5 and 30.3±7.2, respectively), and older adults (post puberty) (18 men and 18 women: 59.5±6.3 and 60.9±8.6, respectively). No significant age differences were observed in each life phase. Women were not recorded at any particular time during the menstrual periods. All subjects were right handed, had normal vision, and had no history of psychiatric or neurological diseases or drug addiction. All subjects gave written informed consent for study participation. The ethics Committee of Kurume University approved the present study.

Eye mark recording

Eye movements were recorded using an eye mark recorder (Nac, EMR-8, Tokyo, Japan) that consisted of two video cameras (left- and right-eye mark-shooting units) fixed to the left and right sides of a headband and another camera (field-shooting unit) fixed to the top of a helmet. Infrared light (850 nM) sources were positioned in front of each lower eyelid. The side cameras recorded the infrared light reflected from the cornea of the eye. The camera on the top of the cap recorded the pictures shown on the screen. After a camera controller superimposed these three recordings with a 0.01 sec electronic timer, the combined recording was saved on videotape. Movement of more than 1° with duration greater than 0.1 sec was scored as an eye movement. Accordingly, the gazing point was determined from a gazing time exceeding 0.1 sec. This technique enabled us to determine eye fixation points. Recorded data were assessed by a computer analysis system. In the present study, exploratory eye movements were analyzed for two parameters: total eye scanning length (TESL) for gazing points, total number of gazing points (TNGP) as reported before [2,4]. Furthermore, in the present study, we divided the measures as TNGP to the right half and the left half field of the screen as the total number of gazing points of the left field (TNGP-l) and the right field (TNGP-r) of screen, and counted the total number of transferring between the left and the right fields. Eye scanning length was calculated from the distance between two eye gazing points as reported previously [2,4].

Eye movement recording procedure

In a darkened room where visual and auditoria sensory stimuli were attenuated, eye movement was recorded using the eye-mark recorder. Before eye movements were recorded, subjects were instructed to confirm each subsequently viewed picture exactly as presented. All subjects were also instructed to view and fix several corners’ points to check their eye movements to evaluate neurological deficits and low-level eye movement as reflex organic saccade. All subjects have no deficits in the present procedure. Exploratory eye movements and fixation saccade during perception of pictures were examined. The pictures were project-
ed onto a screen to form images 120 cm wide and 90
cm tall. Maximum angles of sight lines were 40° hori-
zontally and 24° vertically. Each block consisted of a
series of three pictures each presented for 15 sec.

Three kinds of pictures were used as shown in Fig.
1. The picture of steps on: two symmetrical smiling
babies with smiling sound (70 dB, SPL) examining
possible emotional influences. Picture of steps at cen-
ter: Two symmetrical crying babies with crying sound
(70 dB, SPL) examining possible emotional influenc-
es. The picture of steps below: two symmetrical sim-
ple circles to examine drive and motivation in sub-
jects.

The crying babies and the smiling babies were
counterbalanced. The recording was done as follows.
At session 1: all subjects were asked, “Look the front
pictures freely.” (free condition). At session 2: all sub-
jects were asked “Look the front picture carefully and
memorize” because “I will ask you immediately after
recording, what picture did you see?” (memorized
condition). At session 3: all subjects were asked,
“Are there any differences between the present picture
and the former one? ” to test confidence and attention
(confidence condition). Data were analyzed from the
right eye and the left eye in the present study. There
was no significant difference of analyzing elements in
the eye movements between the right and left eyes.

Statistical analysis

In the present study, we used the data only ob-
tained from the confidence condition (session 3), be-
cause the confidence condition was mostly reflecting
the visual cognitive function [2]. For data, one-way
repeated analysis of variance (ANOVA) was per-
formed to determine epsilon factors using G to G and
H to F epsilon. A two-way (gender × stimuli or gen-
der × field) ANOVA was used to compute the main
gender and the main stimuli and the field effects in
each life period (childhood, young adulthood and old-
er adulthood). Whether interaction was obtained or
not, one-way ANOVA was used. A one-way ANOVA
(gender, stimuli, field) was used to compute the main
gender, group, stimulus and field effects Post-hoc
analyses were conducted using Scheffe tests. A level
of p<0.05 was accepted as statistically significant.

RESULTS

Typical sequences of the exploratory eye move-
ments for one healthy adult men and women viewing
three pictures are shown in Fig. 1. The subject showed

![Fig. 1. Three pictures used (left) and typical series of
exploratory eye movements in a young adult man (middle)
and woman (right). Each dot indicates a gaze point and
each line, a movement. The gaze points were located cen-
trally in simple circles, especially in woman.

<table>
<thead>
<tr>
<th></th>
<th>Pre-puberty</th>
<th>Young adult</th>
<th>Older adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESL (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smiling</td>
<td>518.2±164.7</td>
<td>566.0±156.7</td>
<td>607.0±107.0</td>
</tr>
<tr>
<td>Crying</td>
<td>422.5±162.7</td>
<td>452.7±153.7</td>
<td>560.0±167.5</td>
</tr>
<tr>
<td>Circles</td>
<td>424.0±144.1</td>
<td>458.3±132.6</td>
<td>556.3±164.3</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smiling</td>
<td>534.7±167.6</td>
<td>592.2±116.7</td>
<td>603.7±114.7</td>
</tr>
<tr>
<td>Crying</td>
<td>430.5±153.4</td>
<td>474.2±161.2</td>
<td>536.9±157.8</td>
</tr>
<tr>
<td>Circles</td>
<td>417.0±120.8</td>
<td>569.4±134.0</td>
<td>567.4±198.3</td>
</tr>
<tr>
<td>TNGP (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smiling</td>
<td>26.6±3.4</td>
<td>27.8±5.2</td>
<td>29.3±4.7</td>
</tr>
<tr>
<td>Crying</td>
<td>25.4±3.8</td>
<td>23.6±5.6</td>
<td>27.0±5.7</td>
</tr>
<tr>
<td>Circles</td>
<td>23.5±2.5</td>
<td>24.6±5.6</td>
<td>27.1±6.8</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smiling</td>
<td>27.1±5.1</td>
<td>28.8±5.3</td>
<td>28.6±3.7</td>
</tr>
<tr>
<td>Crying</td>
<td>23.4±3.4</td>
<td>26.3±6.9</td>
<td>27.3±4.3</td>
</tr>
<tr>
<td>Circles</td>
<td>24.3±5.1</td>
<td>28.9±5.0</td>
<td>26.5±4.8</td>
</tr>
</tbody>
</table>

TESL, total eye scanning length; TNGP, total number of gaze points.
clear eye movements, which attached to left and right baby’s eyes and mouth. The gazing points tended to expand in pictures, smiling and circles but not in crying pictures (Fig. 1, Table 1).

Total eye scanning length (TESL) (Figs 2, 3)

Pre puberty: The main gender difference by two-way ANOVA (gender × stimuli) was not significant, but the main stimulus difference was significant \([F=6.9, p<0.01]\). There was no interaction observed between gender and stimuli. The TESL when viewing smiling babies was significantly longer than that of both the crying babies \((p<0.01)\) and the circles \((p<0.01)\). There were no gender differences observed by one-way ANOVA (gender). In girls, TESL \([F=3.0, p<0.05]\) when viewing crying babies was significantly shorter \((p<0.05)\) than those in smiling babies. In boys, TESL \([F=4.3, p<0.05]\) when viewing crying babies was significantly shorter than those in smiling babies \((p<0.05)\) and the circles \((p<0.05)\).

Young adult: The main gender difference by two-way ANOVA (gender × stimuli) was significant \([F=11.9, p<0.0001]\) and the main stimulus difference was also significant \([F=17.0, p<0.0001]\). There was interaction observed between gender and stimuli \((p<0.05)\). The TESL when viewing smiling babies was significantly longer than that of both the crying babies \((p<0.0001)\) and the circles \((p<0.01)\). By one-way ANOVA (gender), TESL of women when viewing the circles was significantly shorter \([F=18.1, p<0.0001]\) than that of age-matched men. In women, TESL \([F=10.4, p<0.0001]\) when viewing smiling babies was significantly longer than those for the crying babies \((p<0.01)\) and the circles \((p<0.01)\). In men, TESL \([F=9.9, p<0.0001]\) when viewing smiling babies was significantly longer than those in crying babies \((p<0.01)\) and TESL when viewing the circles was significantly longer than those in crying babies \((p<0.01)\).

Older adult: The main gender difference by two-way ANOVA (gender × stimuli) was not significant, and the main stimulus difference was also not significant. There was no interaction observed between gender and stimuli \((p=0.058)\). There were no gender differences observed by one-way ANOVA (gender). There was also no significant stimulus difference in elder women or men.

Total number of gazing points (Fig. 4)

Pre puberty: By two-way ANOVA, the main gender difference was not significant, but the main stimuli difference was significant \([F=10.5, p<0.0001]\). There was no interaction observed between stimuli and gender. The TNGP for simple circles of smiling babies was significantly larger than those of both the crying babies \((p<0.001)\) and the circles \((p<0.01)\).

Young adult: The main gender difference by two-way ANOVA was significant \([F=17.7, p<0.0001]\) and the main stimulus difference was also significant \([F=9.1, p<0.0001]\). There was no interaction observed between stimuli and gender. By one-way ANOVA (stimuli), in women, TNGP of smiling babies was significantly larger than those of the crying babies \((p<0.001)\). But, in men, there were not significant differences observed among three stimuli. By one-way ANOVA
(gender), TNGP of women when viewing the crying babies was significantly smaller than those of age-matched men \([F=5.0, p<0.05] \). By one-way ANOVA, TNGP of women when viewing the circles was significantly smaller than those of age-matched men \([F=16.5, p<0.0001] \).

Older adults: The main stimuli difference by two-way ANOVA was significant, \([F=3.8, p<0.05] \) and the main gender difference was not significant. There was no interaction observed between stimuli and gender. The TNGP of smiling babies was significantly larger than those of the circles \((p<0.05) \).

Total number of transferring (between left and right fields)

Pre puberty: The main gender difference by two-way ANOVA (gender \(\times \) stimuli) was not significant, but the main stimulus effect was significant \([F=8.9, p<0.001] \). There was no interaction. The number of transferring of the smiling babies was significantly larger than that of both the crying babies \((p<0.0001) \) and the circles \((p<0.01) \). By one-way ANOVA (stimuli), the number of transferring of girls when viewing smiling babies was significantly larger \([F=5.3, p<0.01] \) than that of the crying babies \((p<0.01) \) and the circles \((p<0.05) \). By one-way ANOVA (stimuli), the number of transferring of boys when viewing smiling babies was significantly larger \([F=4.0, p<0.05] \) than that of the crying babies \((p<0.05) \) and the circles \((p<0.05) \).

Young adult: The main gender difference by two-way ANOVA (gender \(\times \) stimuli) was not significant, but the main stimulus effect was significant \([F=23.4, p<0.0001] \). The number of transferring of the smiling babies was significantly larger than that of both the crying babies \((p<0.0001) \) and the circles \((p<0.0001) \). By one-way ANOVA (stimuli), the number of transferring of women when viewing smiling babies was significantly larger \([F=10.8, p<0.0001] \) than that of the crying babies \((p<0.01) \) and the circles \((p<0.0001) \). The number of transferring of women when viewing crying babies was significantly larger than that of the circles \((p<0.05) \). The number of transferring of men when viewing smiling babies was significantly larger \([F=16.3, p<0.0001] \) than that of the crying babies \((p<0.0001) \) and the circles \((p<0.0001) \). By one-way ANOVA (gender), the number of transferring of men when viewing circles was significantly larger \([F=5.6, p<0.05] \) than that of age-matched women.

Older adult: The main gender difference and the main stimulus effects were not significant by two-way ANOVA (gender \(\times \) stimuli). By one-way ANOVA (stimuli), the number of transferring of women when viewing smiling babies was significantly larger \([F=4.8, p<0.05] \) than that of the crying babies \((p<0.05) \) and the circles \((p<0.001) \). By one-way ANOVA (stimuli), the number of transferring of older men when viewing smiling babies was significantly larger \([F=4.0, p<0.05] \) than that of the crying babies \((p<0.05) \) and the circles \((p<0.01) \).

Left and right fields of screen (Fig. 5)

Pre puberty: The main gender difference by two-way ANOVA (gender \(\times \) side) when viewing the simple circles was not significant, but the main field difference was significant \([F=10.0, p<0.01] \). There was no inter-
action observed between gender and field. The TNGP in left field was significantly smaller \(p<0.01 \) than those in right field.

Young adult: The main gender difference by two-way ANOVA (gender field) when viewing the crying babies was not significant, but the main field difference was significant \(F=6.0, p<0.05 \). There was no interaction observed between gender and field. The TNGP in left field was significantly smaller \(p<0.01 \) than those in right field.

The main gender difference by two-way ANOVA (gender field) when viewing the smiling babies was not significant, but the main field difference was significant \(F=9.0, p<0.01 \). There was no interaction observed between gender and group. The TNGP in right field was significantly smaller \(p<0.01 \) than those in left field.

The main gender difference by two-way ANOVA (gender × side) when viewing the circles was significant \(F=11.3, p<0.0001 \), but the main side difference was not significant. There was interaction observed between gender and side \(p<0.05 \). The TNGP \(F=6.0, p<0.05 \) of women in right side when viewing crying babies was significant shorter \(p<0.05 \) than those in age-matched adult men as shown in Fig. 5. The TNGP \(F=14.6, p<0.001 \) of women in right side when viewing circles was significant smaller \(p<0.001 \) than those in age-matched men as shown in Fig. 5.

Older adult: The main gender difference by two-way ANOVA (gender × side) when viewing the crying babies was not significant but the main side difference was significant \(F=7.9, p<0.01 \). There was no interaction observed between gender and group. The TNGP in left side was significantly smaller \(p<0.01 \) than those in right side.

DISCUSSION

The most important finding of the present study was that exploratory eye movements clearly differed between young adult women and men when viewing simple circles and crying babies only at right field, whether pre puberty or older adults did not; this suggests that exploratory eye movement is a useful biologic marker for evaluating the gender difference.

Kojima et al. [2,3] investigated exploratory eye movements using specially constructed S-shaped geometric figures, demonstrating that exploratory eye movement was a useful biologic marker of visual cognitive function in humans. In the present study, we found that exploratory eye movement of women showed properties similar to those previously Miyahira et al. [4] found that TESL in adult women was shorter than that in men. The present study also examined effects of affective stimuli on eye movements as well as gender difference in eye movements at different times of life. Specific aspects are discussed below.

Total eye scanning length (TESL)

TESL for women was significantly shorter than for men. The TESL when viewing the smiling babies was the longest among the three stimuli, followed by simple circles and then crying babies. Since significant gender differences in TESL were seen only when young adults viewed simple circles, scanning length may vary considerably with age. Young adults, and elderly persons, scanning length varied between age-defined groups for crying babies and simple circles, but not for smiling babies, suggesting that the former figures show more variability in response according to age than the latter. These findings also suggest that simple visual targets may be particularly useful for evaluating exploratory eye movement studies according to gender differences, as reported previously [4,18]. Findings might reflect method of visual response assessment, but one should consider that no significant changes among three life phases were seen when viewing the smiling babies.

Before puberty, TESL for crying babies, smiling babies, and circles did not show significant gender differences. In older adults, TESL also did not show significant gender differences. A gender difference for TESL was obtained only in younger adults, suggesting again that responses to these visual stimuli may be developmentally and/or hormonally dependent as reported previously [4,18].

The schismatic decussating of optic nerve fibers from the retina in humans ensures that each primary visual cortex receives input exclusively from the contralateral visual field. The source of gender difference could easily arise from a slightly slower scan [10], a longer decision time at each stage of scanning, or a more rapid decay of stored visual information in women [19].

In young adults, TESL of women on the right side when viewing the simple circles was significantly shorter than that of age-matched adult men, but TESL for the left field did not differ significantly between genders in young adults. In case of the mental rotation task, men showed a right-hemisphere advantage whereas women showed no hemisphere differences [20,21]. This laterality may indicate that the gender difference for TESL in adults viewing simple circles resulted from hemispheric functional differences.
Thus, the TESL on exploratory eye movements may be useful for an evaluation the hemispheric function of brain concerning gender differences.

Total number of gaze points (TNGP)

The right brain has been considered to role emotional functions, and the left-brain symbolic functions [14,22]. In the present study, difference of affective stimuli is obvious only at left fielding the screen, however, gender difference is only observed at right field. Schwartz et al. [20] reported that for emotion-linked images the eyes tended to move leftward, in contrast to rightward for other images; they concluded that this supported links between the right brain and emotional function. Furthermore, Gary et al. [22] reported that right-handed subjects tend to look to the left when answering affective questions, and concluded that the right hemisphere has special role in emotion in the intact brain. We showed that TNGP was smaller when young adult subjects of both genders viewed crying baby faces than when they viewed smiling baby faces, but only in the left field. Thus, the present observations which the effects of affection is significant only at left field on the screen, may be useful for an evaluation the hemispheric function of brain.

Women are considered to show a more cognitive balance between right and left-brain as reported previously [5,15,23].

Conclusions and physiologic significance

Significant gender differences were observed between young adult women and men when viewing the simple circles and the crying babies with exploratory eye movement. Shorter TESL and smaller TNGP in adult women were obtained to evaluate fixation points as subjects viewed the simple circles and the crying babies in preparation for copying them. No gender differences were seen in children and older adults, suggesting that exploratory eye movements may be influenced by gonadal hormones [24]. Both TESL and TNGP might be a gender marker, and TNGP might be a reflex of hemispheric function. Women appeared to gaze at certain parts of the circle with even balance between right and left fields, reflecting attentional focus.

Finally, exploratory eye movements while viewing certain pictures showed large differences between women and men in the right field, and marked differences among facial affection in the left field. Thus, exploratory eye movements appear to include gender and hemispheric functional markers helping to make them useful for exploring human visual cognition.

REFERENCES

18. Miyahira A, Morita K, Yamaguchi H, Morita Y, and Hisao M. Gender differences and reproducibility in exploratory

TAKASHI OHYA, SHINICHIRO NAGAMITSU, YUSHIRO YAMASHITA AND TOYOJIRO MATSUSHI

Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume 830-0011, Japan

Received 9 October 2007, accepted 16 January 2008

Summary: We report a 5-year-old mentally retarded Japanese boy who developed acute disseminated encephalomyelitis (ADEM) two weeks after Japanese encephalitis vaccination (Beijing strain). He presented sudden status epilepticus, fever, and disturbance of consciousness. Initial neuroradiological findings revealed multifocal cortical swellings without any white matter lesions, suggesting the existence of partial encephalitis or focal status epilepticus. On the follow-up neuroradiological examinations, small white matter lesions were identified as having gradually extended in spite of clinical improvement by methylprednisolone pulse therapy. The cortical involvement became temporarily worse along with the extension and delayed appearance of white matter lesions. Single photon emission computed tomography (SPECT) showed marked hypoperfusion of cerebral blood flow (CBF) in the cortical lesions at both the acute and the recovery period. The serial neuroradiological findings indicated involvement of white matter and gray matter regions at different stages of the illness and a delay between the onset of symptoms and the appearance of ADEM-associated MR imaging of white-matter lesions.

Key words ADEM, JE vaccination, ADEM-associated MR imaging

INTRODUCTION

Japanese encephalitis (JE) is one of the most common causes of epidemic viral encephalitis in the world, especially in South-East Asia. The annual incidence and mortality estimates for JE in South-East Asia are 30,000-50,000 and 10,000, respectively. However, this figure might be an underestimate, one study estimated the annual incidence at 175,000 per year [1]. The number of patients with JE in Japan was several thousand per year in the 1950’s. Beginning in 1967, vaccination was actively recommended, the incidence was about a dozen per year in the 1980’s and several per year after 1992 [2].

Acute disseminated encephalomyelitis (ADEM) is an acute demyelinating disorder of the central nervous system. It usually follows an infection or vaccination. It is clinically characterized by the acute or subacute onset of a multifocal neurological disturbance that typically follows a monophasic course. MRI findings typically reveal multifocal increased signal intensities on T2-weighted image in the white matter, subcortical white matter, basal ganglia, brainstem, or spinal cord [3]. Fourteen cases of ADEM after JE vaccination have been reported since 1991 in Japan [4]. Because some cases were severe, the Japanese Ministry of Health, Labor and Welfare recommended a suspension of JE vaccination in May, 2005.

Here we report a patient having ADEM associated with JE vaccination who showed atypical neuroradiological findings in the various stages of the illness.
CASE REPORT

A 5-year-old mentally retarded boy suddenly developed generalized tonic-clonic seizure that lasted about 60 min, 2 weeks after his third JE vaccination was administered. He had been diagnosed as having delayed motor milestones, mental retardation (developmental quotient: 27), congenital anomalies of the trachea (tracheobronchial malacia, stenosis of the left main trachea), and asthma. Screening for inborn errors of metabolism was negative. Chromosome study revealed normal male karyotype. He was allergic to soybeans, wheat and corn before the onset of this episode. There was no family history of epileptic, neuromuscular, metabolic, collagen-related, vascular or demyelinating disorders. He had previously received vaccinations for measles, BCG, rubella, polio, chickenpox and mumps without any complications.

When he was admitted to Kurume University Hospital with status epilepticus, he had fever, dyspnea with wheeze, and disturbance of consciousness. No meningeal signs were observed. The peripheral white blood cell count was increased (32400 /mm3) and C-reactive protein was positive (6.76 mg/dl). Serum levels of electrolytes, glucose, transaminase and ammonium were normal. Cerebrospinal fluid (CSF) contained leukocytes at 3 /mm3, all leukocytes were mononuclear cells. Total protein and myelin basic protein (MBP) in the CSF were 20 mg/dl and 377 pg/ml (normal<102 pg/ml), respectively. No IgG oligoclonal band was detected. We examined JE virus hemagglutination inhibited titers and IgM (enzyme-immunoassay) of varicella-zoster virus, herpes simplex virus, cytomegalovirus and Mycoplasma pneumoniae (Particle agglutination) in CSF. They were all negative. Brain CT on admission revealed no hemorrhage or cortical edema. Electroencephalogram at 3 days of illness revealed diffuse high-amplitude delta waves without any focal epileptic discharge. At 6 days of illness, neuroradiological examinations including brain

![Fig 1. Magnetic resonance imaging of the brain. Upper row: T1-weighted MR imaging. Lower row: T2-weighted MR imaging. A. 6 days of illness. Cortical swellings with increased signal intensities in T2-weighted axial imaging appear in the bilateral frontal and right occipital regions (arrows). B. 18 days of illness. The cortical swelling is diminished in the bilateral frontal and right occipital regions. Increased signal intensities in the bilateral frontal white matter appear in the T2-weighted imaging (arrowheads). C. 1 month of illness. The cortical swelling and white matter lesions of bilateral frontal lobes and right occipital lobe have worsened again. (arrowheads). Marked cerebral atrophy is also seen. D. 3 months of illness. The cortical lesions have disappeared and the white matter lesions remained behind. R: right, L: left.](image)
CT, MRI, 123I-IMP single photon emission computed tomography (SPECT) were performed. Brain CT revealed poor differentiation between the cortex and the white matter, and MRI showed focal cortical swellings in the bilateral frontal and right occipital regions (Fig. 1A). 123I-IMP SPECT showed decreased cerebral blood flow (CBF) in the bilateral frontal, right occipital, and right parietal regions, where these regions had cortical swellings on MRI (arrows). In frontal regions, CBF was much decreased in the right. Although we examined MRI of the spinal cord, it was normal at acute phase.

Initially, we suspected partial encephalitis or focal status epilepticus based on clinical symptoms and neuroradiological findings, thus, we treated the patient with intravenous administration of an antiepileptic agent and mannitol to lower intracranial pressure. However, we could not deny the existence of ADEM on account of the recent vaccination, therefore, we started methylprednisolone pulse therapy (dose; 30 mg/kg/day, 3 days a week, total 9 times) at 7 days of illness. On the follow-up MRI at 18 days of illness, increased signal intensities in the bilateral frontal white matter were identified on the T2-weighted image (Fig. 1B), the size of these lesions showed gradual increase at 1 and 3 months of illness (Fig. 1C, D). In addition, the signal intensity in the right occipital region was increased at 1 month of illness (Fig. 1C). The focal cortical swellings in the bilateral frontal and right occipital regions were decreased at 18 days of illness, however, these regions seemed to swell again along with enlargement or delayed appearance of white matter lesions at 1 month of illness before disappearing at 3 months of illness (Fig. 1A-D). At 3 months of illness, the white matter lesions remained behind (Fig. 1D). The patient’s consciousness was gradually improved at 3 days after the beginning of the methylprednisolone pulse therapy. He could smile at 9 days, maintain a sitting position at 14 days, and stand up at 24 days after the therapy. After methylprednisolone pulse therapy, prednisolone (1 mg/kg/day) was orally administered, the medication was tapered and discontinued within six months. He has shown no neurological sequel except intractable complex partial seizures with multifocal spikes.

On the follow-up neuroradiological examination
at 2 years of illness, MRI showed marked cortical atrophy predominantly in the bilateral frontal and temporal regions (Fig. 2B). MRI also showed the cortical and white matter lesions in the bilateral frontal and right parietal regions where 123I-IMP SPECT showed decreased CBF (Fig. 2B).

DISCUSSION

The incidence of severe neurological complications associated with JE vaccination has been reported to be 1-2.3 per million vaccinations [5]. We previously reported seven cases of ADEM after JE vaccination [4], in which various neurological symptoms such as seizure, disturbance of consciousness, paralysis, gait disturbance, and headache, were seen. Initially, we suspected our patient of having partial encephalitis or focal status epilepticus based on his clinical symptoms and initial neuroradiological findings. However, the serial neuroradiological findings—in particular, the late appearance of abnormal signal intensities in the white matter regions, the history of JE vaccination, good clinical response to methylprednisolone therapy, and good clinical prognosis—confirmed the existence of ADEM in this patient. We also could determine that the patient did not have cerebral infarction or a progressive white matter disease such as metachromatic leukodystrophy, adrenoleukodystrophy, Krabbe disease and other metabolic demyelinating diseases.

According to the previous literature, MRI findings of ADEM after JE vaccination typically reveal multifocal lesions predominantly in the deep white matter, thalamus, cerebellum and optic nerve, generally identified at the early stage of neurological symptoms [4]. In our case, we could detect a few characteristic MRI findings in the serial examinations. First, multifocal cortical swellings without the white matter lesions were found at the onset of neurological symptoms. Second was the late appearance of white matter lesions in spite of the improvement of clinical symptoms. Third, the cortical swellings became worse temporarily along with the enlargement or appearance of white matter lesions.

It is known that MRI findings of patients with generalized tonic-clonic seizure or status epilepticus reveal transient changes including focally increased T2 signal intensity, swelling, and increased volume of the involved cortical gyrus due to seizure-induced transient cytotoxic and vasogenic cerebral edema [6,7]. In our case, the initial cortical swellings and their diminutions between 6 days and 18 days of illness may reflect transient cortical edema due to prolonged seizure activity. On the other hand, white matter lesions on MRI obtained from some patients with ADEM have been reported to appear shortly after symptom onset [8,9]. Honkaniemi et al. [8] reported three cases of ADEM in which white matter lesions did not appear until several weeks after the onset of the disease and increased during the recovery period. Kimura et al. [9] also reported that initial MR imaging failed to show ADEM-related lesions in children with postinfectious encephalitis. Although ADEM is typically described as affecting the white matter, gray matter involvement is not unusual because it also contains myelin [3,10]. Taken together, the delayed appearance of white matter lesions during a phase in which clinical symptoms was absent may indicate ADEM-related demyelination. The pathological mechanism of the delay between the neuroradiological findings and neurological symptoms remains unknown. It is important to know that both white matter and gray matter are involved at different stages of the illness and that consecutive neuroradiological evaluation is necessary if the clinical picture is suggestive for ADEM.

Because of the delay between the onset of symptoms and the appearance of ADEM-associated MR imaging, SPECT has contributed to identification of regions with functional deficits at different stages of the disease [11-13]. Okamoto et al. [12] reported that persistent hypoperfusion both at rest and in response to acetazolamide administration remained even after disappearance of hyperintensive lesions from MRI, suggesting persistent impairment of cerebral circulation affecting cognitive abilities. A previous HMPAO-SPECT study of a patient with ADEM revealed a combined pattern of hyper and hypoperfusion regions and the presence of inflammatory cells and cortical deactivation secondary to disconnection from the subcortical structures, respectively [13]. Serial SPECT study in our case showed persistent hypoperfusion in several cortical regions indicating impairment of cortical activity, which resulted from the decreased volume of the involved cortical gyri. We cannot always detect these abnormalities on MRI. We considered that it is useful to follow serial SPECT.

In conclusion, serial MRI and SPECT may contribute to assessing the involvement of lesions and functional impairment at different stages of the disease.

REFERENCES

Dose-Dependent Effects of Recombinant Human Interleukin-11 on the Systemic Hemodynamic Function and Urination

KANEATSU HONMA*, **, NANCY L. KOLES**, HASAN B. ALAM†
JAMES C. KEITH Jr.‡ AND MATTHEW POLLACK**

*Division of Operative Management, Koga Hospital 21, Kurume 839-0801, Japan, Departments of Medicine** and Surgery†,
Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine,
Bethesda MD 20814 and ‡Wyeth Research, Andover MA 01810, USA

Received 16 November 2007, accepted 9 January 2008

Edited by HISAO IKEDA

Summary: The purpose of this study was to determine whether recombinant human interleukin-11 (rhIL-11) could dose-dependently improve the hemodynamic function. Using a swine hemorrhagic shock model, rhIL-11 was given at the beginning of resuscitation. The animals were randomized to receive a single dose of rhIL-11 (5, 20, or 50 µg/kg, group I to III for respectively) or saline (group IV). Blood, urine and both pleural and peritoneal effusion were thus obtained and analyzed. The mean arterial pressure (MAP) was higher post-resuscitation (PR) in group III (62.9±8.2 mmHg) than in groups I, II and IV (54.9±1.7, 53.9±4.3, 55.9±9.4 mmHg, respectively) (P<0.01). The urine output (I: 999±428, II: 1249±180, III: 1434±325, IV: 958±390 ml) and the cardiac output (CO) (I: 3.01±0.66, II: 3.30±0.49, III: 3.43±0.57, IV: 2.73±0.49 L/min.) increased in a dose dependent manner of rhIL-11. CO level and urine output were significantly higher in group III than in group IV (P<0.05). In addition, the volume of third space fluid loss (pleural and peritoneal effusion) of group III was significantly lower than other groups (I: 157±32, II: 138±32, III: 82±21, IV: 125±32 ml) (P<0.05). In conclusion, even a low dose of rhIL-11 improved the hemodynamic functions dose-dependently in a porcine model of hemorrhagic shock, although the relationship did not demonstrate a simple linearity.

Key words recombinant human interleukin-11, hemorrhagic shock, effusion, urination, dose-dependent

INTRODUCTION

Interleukin-11 (IL-11), a multi potential cytokine, exhibits anti-inflammatory and protective activities in a variety of in vivo and in vitro models [1,2]. Our previous study demonstrated that the administration of recombinant human interleukin-11 (rhIL-11) (50 µg/kg) improved the levels of mean arterial pressure (MAP) and urine output, and reduced the amount of third space fluid loss in a hemorrhagic shock model of rats and swine. We hypothesized that the increasing vascular permeability in hemorrhagic shock might therefore be inhibited by rhIL-11 [3]. However, we did not determine whether these beneficial effects of rhIL-11 were dose dependent. The purpose of this study was to determine whether rhIL-11 could improve both the MAP and urine output, and also decrease the amount of third space fluid loss in a dose-dependent manner in a swine hemorrhagic shock model.
research was conducted in compliance with the Animal Welfare act and other Federal statutes and regulations relating to the animals and experiments involving animals. This study adhered to the principles stated in the Guide for the Care and Use of Laboratory Animals, NIH publication no. 86-23, 1985 edition.

Animal surgery

Yorkshire swine (25-35 kg) were fed a standard diet, and food was withheld the night before the experiment. Anesthesia was induced with an intramuscular injection of ketamine (10 mg/kg) and then the swine inhaled isoflurane and intubated. The animals were allowed to breath spontaneously using a Narkomed 2A ventilator (North American Dräger, Telford, PA). Under aseptic conditions, the right carotid artery and a branch of the external jugular vein were cannulated with a 16-gauge angiocatheter and 8.5F introducer catheter sheaths, respectively. A 7.5-Fr oximetric thermodilution pulmonary artery catheter (Edwards Lifesciences LLC, Irvine, CA) was positioned in the pulmonary artery through the introducer sheath. Urine was collected using a catheter that was surgically placed in the bladder. Based on a volume-controlled porcine model of hemorrhagic shock, bleeding was induced at a rate of 28 ml/kg (approximately 40% of the estimated total blood volume) in all animals during a 15-min period through the carotid artery line. The animals were thereafter maintained in a state of hypovolemic shock for 60 min, and then were injected with the designed dose of rhIL-11 (Wyeth Research, Andover, Massachusetts) at the beginning of resuscitation with 0.9% sodium chloride solution (3 × shed blood volume), over a period of one hr and then were observed for an additional 6 hrs. The animals were randomly assigned into 5 µg/kg (Group I, n= 6), 20 µg/kg (Group II, n=5), 50 µg/kg (Group III, n=6), saline control (Group IV, n=7).

Blood and urine samples were obtained and analyzed at baseline, and at the end of hemorrhaging, and thereafter once every an hour. Urine specific gravity was analyzed at the time period of baseline, resuscitation one hour and post resuscitation 6 hrs. The amounts of both pleural and peritoneal effusion were precisely quantified using the clinically accepted criteria at the time of sacrifice.

Statistical analyses

All data are represented as the group means ± S.D. The Instat statistical software package (GraphPad Software, Inc., San Diego, CA) was used for intergroup comparisons. The parametric data were analyzed by an analysis of variance (ANOVA). Significance was defined as P<0.05.

RESULTS

Mean Arterial Pressure (MAP)

The MAP of Group III was significantly higher than other groups following resuscitation (I: 54.9±1.7, II: 53.9±4.3, III: 62.9±8.62, IV: 55.9±9.4 mmHg, P< 0.01), as shown in Table 1.

Urine output

The total urine output is shown in Table 2. The urine output improved dose-dependently (I: 999±428, II: 1249±180, III: 1434±325, IV: 958±390 ml). The urine output was a significantly higher in group III than in group IV (P<0.05).

Effusion volume

The effusion volume (pleural and peritoneal effu-

| TABLE 1. Effect of rhIL-11 on MAP in hemorrhagic shock in pigs |
|-----------|---|----------------|
| Groups | n | Mean±SEM |
| I (rhIL-11: 5 µg/kg) | 6 | 54.9±1.7 mmHg |
| II (rhIL-11: 20 µg/kg) | 5 | 53.9±4.3 mmHg |
| III (rhIL-11: 50 µg/kg) | 6 | 62.9±8.2 mmHg* |
| IV (saline control) | 7 | 55.9±9.4 mmHg |

*P<0.01
P values refer to the level of statistical significance regarding the observed differences in MAP at 6 h post-resuscitation among the animals in study groups I, II, IV and III.

| TABLE 2. Urine output of the resuscitation period, and the volume of effusion (pleural and peritoneal) at the time of sacrifice (mean ± SEM) |
|----------------|-----------|----------------|
| Groups n | Urine output (Resuscitation time 0 ~ Post-resuscitation time 6 h [mL]) | Third space fluid loss (mL) |
| I 6 | 999±428 | 156.5±84.8 |
| II 5 | 1249±180 | 137.6±52.3 |
| III 6 | 1434±325*| 82.0±21.0* |
| IV 7 | 958±390* | 125.2±32.0 |

*P<0.05
P values refer to the level of statistical significance of observed differences in urine output (III and IV), and in third space fluid loss among animals in study groups I, II, IV and III.
sion) was shown in Table 2. There were no significant differences in the volume of peritoneal and pleural effusion between among groups I, II and IV (I: 157±85, II: 138±57, IV: 125±32 ml). But the effusion volumes were significant lower in other groups (P<0.05).

Urine specific gravity

Urine specific gravity at the time period of resuscitation 1 hr in group III (1.004) was significant lower than in groups I and IV (P<0.05), as shown in Table 3.

Cardiac output (CO)

The CO (I: 3.01±0.66, II: 3.30±0.49, III: 3.43±0.57, IV: 2.73±0.49 L/min.) increased dose-dependently. CO was significant higher in group II and III than in group IV, and significant higher in group III than group I, as shown in Table 4.

DISCUSSION

IL-11 is a multifunctional cytokine that shows a variety of effects, including anti-inflammatory, immunomodulatory, and cytoprotective effects in several animal models [1,2]. We previously demonstrated that 50 µg/kg of rhIL-11 injected at the beginning of resuscitation improved the systemic hemodynamic function in a swine hemorrhagic shock and resuscitation model [3]. Based on our previous data, we suggested that rhIL-11 might be a factor that plays an important role in regulating the vessel permeability and the systemic hemodynamic function. Regarding the contractile properties of the gut, the dose-dependent effects of rhIL-11 in rabbits colitis model have been reported [4]. However, so far no controlled studies demonstrating a dose-dependent effect of rhIL-11 on the systemic hemodynamic function have yet been reported.

Our data revealed that the urine output of these four groups increased dose-dependently of rhIL-11, while the third space fluid loss tended to decrease dose dependently. MAP was higher post-resuscitation (PR) in group III than in group I, II and IV. CO was improved dose-dependently by rhIL-11 in the PR period and was significant higher in groups II, III than in group IV, and higher in group III than in group I. Although our data did not show any significant differences between the groups receiving low dose injection regarding MAP, urine output, or third space fluid loss, these data nev-

Table 3.

Urine specific gravity (mean±SEM)

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>Baseline</th>
<th>Shock (60 min)</th>
<th>Resuscitation time 1 h</th>
<th>Post resuscitation time 6 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.012±0.004</td>
<td>1.007±0.001</td>
<td>1.018±0.008</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>1.008±0.003</td>
<td>1.004±0.001</td>
<td>1.017±0.002</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>1.007±0.004</td>
<td>1.004±0.001*</td>
<td>1.017±0.007</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>7</td>
<td>1.011±0.006</td>
<td>1.005±0.001</td>
<td>1.015±0.003</td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05

P values refer to the level of statistical significance of observed differences in urine specific gravity at the time period of end-resuscitation among animals in study groups I, IV and III.

Table 4.

Cardiac output (L/min [mean±SEM])

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>Baseline</th>
<th>Shock (0 min)</th>
<th>Shock (60 min)</th>
<th>Resuscitation (60 min)</th>
<th>Post-resuscitation (60-180 min)</th>
<th>Post-resuscitation (240-360 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>4.38±0.46</td>
<td>1.07±0.35</td>
<td>2.12±0.35</td>
<td>4.87±0.99</td>
<td>3.16±0.55</td>
<td>3.01±0.66*</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>4.45±0.73</td>
<td>1.47±0.49</td>
<td>2.43±0.36</td>
<td>5.53±0.72</td>
<td>3.40±0.43</td>
<td>3.30±0.49*</td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>4.57±0.73</td>
<td>1.11±0.21</td>
<td>2.32±1.11</td>
<td>5.33±1.00</td>
<td>3.36±0.45</td>
<td>3.43±0.57*</td>
</tr>
<tr>
<td>IV</td>
<td>7</td>
<td>3.98±0.66</td>
<td>1.10±0.38</td>
<td>1.85±0.46</td>
<td>4.79±0.95</td>
<td>3.11±0.49</td>
<td>2.73±0.49*</td>
</tr>
</tbody>
</table>

*P<0.05

P values refer to the level of statistical significance regarding the observed differences in CO at the time period of post-resuscitation in study groups II, III and IV, I and III, and of resuscitation in groups III and IV. CO tended to increase dose-dependently at the time period of resuscitation and post-resuscitation.
Nevertheless did show a dose-dependent tendency. This might be due to the small number of subjects studied or the low dose of rhIL-11 in our study.

Depoortere et al. [4] demonstrated that rhIL-11 treatment dose-dependently decreased the inflammation in the colon, but the highest dose (720 µg/kg) of rhIL-11 only enhanced the body weight loss in comparison to the nontreated inflamed colitis rabbits. They also showed that the inflammation effect was normalized with the lowest dose of rhIL-11 in the proximal part of the colon, whereas in the distal part of the colon, the highest dose was needed. These data suggested that both a dose-dependent effective site and a dose-independent effective site thus exist in the gut. In our rat model, 100 µg/kg of rhIL-11 improved the systemic hemodynamic function and produced a marked reduction in the interleukin-6 (IL-6) mRNA expression (unpublished data). A large dose of rhIL-11 is suggested to more strongly restore the increased vascular permeability, while also normalizing tissue edema and body weight during hemorrhagic shock and resuscitation. It is currently accepted that neutrophils (PMN), which are activated by IL-6, are believed to be present in the microvasculature of end organs, thus releasing cytotoxic proteases and oxygen radicals that injure the endothelium and cause vascular leakage, tissue edema, and eventually organ injury and failure [5, 6]. In addition, the local proinflammatory effects of IL-6 on PMN infiltration and organ damage in hemorrhagic shock have also been demonstrated [7]. This present study did not evaluate the changes in IL-6 mRNA during hemorrhagic shock. Further studies with a larger number of subjects and a larger dose of rhIL-11 are thus needed. In addition, further investigation regarding whether rhIL-11 dose-dependently reduce the IL-6 mRNA expression or the lipopolysaccharide-induced production of proinflammatory cytokines, or nitric oxide from macrophages [1] are also desirable.

In conclusion, even in a low dose administration of rhIL-11, rhIL-11 improved the systemic hemodynamic function and urine output dose-dependently, thereby reducing the degree of third space fluid loss following hemorrhagic shock and resuscitation, although the relationship did not demonstrate a simple linearity.

ACKNOWLEDGMENTS: This study was supported by an Office of Naval research Grant #N00014-03-MP-2-0057.

REFERENCES

Interstitial pneumonia (IP) is associated with an increased risk of postoperative acute exacerbation [1]. An acute exacerbation of IP is a serious postoperative complication and the consequences are extremely poor. Therefore, a surgeon must do everything possible to prevent an acute exacerbation of IP [2]. We herein report the successful perioperative management of a rectal cancer patient with severe IP and chronic pneumothorax, while paying special attention to the respiratory functions, to less invasive surgery and anesthetic management.

CASE REPORT

A 68-year-old man who was out patient for his IP with chronic pneumothorax was referred to the division of surgery due to rectal cancer. The patient had presented with dyspnea, exhibiting Hugh-Jones grade 4. Fine crackles were audible. The results of pulmonary function testing indicated a pattern of restrictive defects, including a vital capacity (VC) of 1.44 L (44% of predicted VC) and a forced expiratory volume at 1 s (FEV1.0) of 1.42 L (98.6% of forced VC). Arterial blood gas (ABG) analysis data showed a partial pressure of oxygen (PaO2) of 141.9 torr (99.5% arterial oxygen saturation (SaO2)), a partial pressure of carbon dioxide (PaCO2) of 42.6 torr, and pH of 7.452 with 1 L

Abbreviations: ABG, arterial blood gas; CT, computed tomography; FEV, forced expiratory volume; FIO2, fraction of inspired oxygen; IP, interstitial pneumonia; PaCO2, partial pressure of carbon dioxide; PaO2, partial pressure of oxygen; SaO2, arterial oxygen saturation; SpO2, pulse oxygen saturation; VC, vital capacity.
of nasal flow of oxygen in the supine position. The serum lactate dehydrogenase level was normal. The major causal factors of secondary IP include such factors, as the occupational history, the residential history, the drug history and the collagen disease were evaluated. The patient was diagnosed to have stable idiopathic IP based on clinical findings, chest X-ray films and chest computed tomography (CT) by chest physicians (Fig. 1). A total of 41.8 Gy radiation therapy for controlling locally advanced tumors was conducted for 4 weeks in the combination with 750 mg of Tegaful suppository for 2 weeks, reduction of the tumor size (partial response) was found (T3, N0, M0: stage II) (Fig. 2), and a low anterior resection was employed under combined spinal-epidural anesthesia in spontaneous respiration in the lithotomic position. An epidural catheter was placed at T10-T11 space. A test dose of 4 ml of 1% lidocaine hydrochloride was given to rule out subarachnoid or intravascular placement of the catheter, and then, spinal anesthesia was initiated by injecting 2.8 ml of 0.5% isobaric lidocaine hydrochloride and 1 ml of fentanyl citrate via a 25 gauge spinal needle into the L3-L4 interspace. Epidural analgesia was continuously injected by 2 ml of 1% lidocaine hydrochloride. Intraoperative sedation was provided with titrated doses (10 ml) of propofol; a total of 550 ml of propofol was given. The surgery lasted 4 hrs. The postoperative epidural analgesia was very satisfactory for managing the pain. ABG analysis on 30% fraction of inspired oxygen (FIO₂) showed 100%
of pulse oxygen saturation (SpO₂) and almost the same PaO₂ as that of preoperative data (PH 7.348, PaCO₂ 56.3 torr, PaO₂ 147.0 torr intraoperatively). Postoperative ABG analysis was followings, PH 7.412, PaCO₂ 48.7 torr, PaO₂ 104.5 torr and SpO₂ 99% on 1 L of mask flow of oxygen in the supine position. The postoperative respiratory functions were uneventful. About the 10th postoperative day, the patient showed symptoms of intrapelvic abscess due to the anastomotic leakage. In order to avoid complications due to spinal or epidural anesthesia and to prevent acute exacerbation, general anesthesia was employed with minimal FIO₂ (0.3-0.4) at the 2nd operation because the patient’s condition was thought to be bacteremia. The SpO₂ was 100% after intubation. Ventilation consisted of a tidal volume of 350 ml, and a respiratory rate of 6 to 8 breaths/min. The perioperative respiratory functions were uneventful without any pulmonary complications. In this case, there was concern about anastomotic leakage because of the poor condition of the patient, the influence of radiotherapy, and the low colorectal anastomosis, which would require a temporary colostomy to reduce postoperative complications [7].

Seven of 47 lung cancer patients showed an acute exacerbation of IP within 30 days after undergoing video-assisted less invasive thoracic surgery [8]. There was no correlation between the surgical invasiveness and the postoperative complications of the IP [9-11]. However, clinical deterioration in IP is expected and the 5 year survival ranges from 30 to 50%. In addition, few studies have identified the features of IP that are associated with an increased risk of disease progression and death [12,13]. It is possible that one of these factors would restrict major surgery.

Since the high concentration of oxygen is suggested to be one of the causes of the postoperative exacerbation of IP, when a patient received an operation under general anesthesia, minimal FIO₂ must be used with the general anesthesia [9-11,14]. However, the correlation between the high concentration of oxygen and acute exacerbation is controversial and inadequately defined [8,10]. Clark and Lanbertsten [15] reviewed the toxic effects of oxygen upon the lung and the mechanisms of pulmonary oxygen toxicity. These results suggested that intraoperative oxygen concentration should be reduced as much as possible [9,10,14,16].

It was difficult to predict the development acute exacerbation of IP [11,14], further studies to investigate the correlation between acute exacerbation and intraoperative FIO₂ in cooperation with an anesthesiologist are needed. For the perioperative administration to prevent an acute exacerbation, methylprednisolone and bronchodilators may be useful [17]. In addition, the presence of inflammation might contribute to acute lung tissue damage and exacerbation. We should avoid surgery in patients demonstrating the presence of inflammation or an active phase of IP. In conclusion, this report documents the successful perioperative management of IP with chronic pneumothorax during rectal surgery. For major surgery for a patient with severe IP, the selection of appropriate therapy under the evaluation of activity of IP, the careful observation of respiratory state after surgery and the cooperation between surgeons and anesthesiologists in order to perform less invasive surgery and prevent postoperative acute exacerbation is thus considered to be important.
REFERENCES

A Case of Horseshoe Kidney with Surplus Renal Arteries

AKIRA YAKEISHI**, TSUYOSHI SAGA*, HIROKO SO*, MAKOTO TETSUKA*, YOSHIO ARAKI*, SEIJI KOBAYASHI* AND KOH-ICHI YAMAKI*

Department of Anatomy* and Dental and Oral Medical Center**, Kurume University School of Medicine, Kurume 830-0011, Japan

Received 4 October 2007, accepted 17 December 2007

Edited by SEIYA OKUDA

Summary: During a gross anatomy course at Kurume University School of Medicine in 2001, an anomaly of the kidneys was found. The lower ends of the kidneys were fused by a renal substance and formed a horseshoe kidney located ventral to the abdominal aorta and inferior vena cava. Both renal hila opened very widely in the ventral direction, with the left hilum being larger than the right. This horseshoe kidney had original left and right renal arteries that branched from the abdominal aorta. As well, there were four surplus renal arteries. The first surplus artery branched from the right renal artery and was distributed to the upper pole of the right kidney. The second arose from the abdominal aorta and was distributed to the inferior pole of the right kidney. The third arose from the abdominal aorta and was distributed to the inferior pole of the left kidney and part of the isthmus. The fourth branched from the abdominal aorta and was distributed to the upper pole of the left kidney. The incidence of horseshoe kidneys in Japanese anatomical dissections has been reported as 0.15-0.48%. This was the sixth such case for our laboratory, representing a frequency of 0.1% (6 of 1902 dissections) from 1952 to 2001.

Key words human anatomy, anomaly, horseshoe kidney

INTRODUCTION

The horseshoe kidney is a well known congenital fusion anomaly of the kidneys. The frequency of horseshoe kidney incidence ranges from 1/400 to 1/1800 [1]. During the gross anatomy course at Kurume University School of Medicine in 2001, the sixth case of horseshoe kidney was found in our laboratory. This horseshoe kidney had a tumor mass on the left upper side of the isthmus and a rare arterial anomaly of the celiac trunk.

CASE REPORT

This report describes an kidney anomaly found in an 81-year-old Japanese male cadaver who had died of bladder cancer. The lower ends of the kidneys were fused and thus formed a horseshoe kidney. The horseshoe kidney was located ventral to the abdominal aorta and inferior vena cava. A huge tumor mass was present on the left side of the isthmus to the upper pole of the left kidney with accretion. After removal of the tumor mass, the boundaries between the isthmus and the kidneys were indistinct. The long axes of both kidneys ran from the outer upper side to the inner lower side. The surfaces of the kidneys were smooth (Fig. 1 A and B).

Size and position of the horseshoe kidney

The upper poles of the left and right kidneys were positioned at the level between the first and second lumbar vertebrae. The upper edge of the isthmus was at the level of the third lumbar vertebra. The lower edge of the isthmus was at the level between the fourth

Corresponding Author: Akira Yakeishi, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan. Tel: +81-942-31-7540 Fax: +81-942-33-3233 E-mail: yakeishi@med.kurume-u.ac.jp
and fifth lumber vertebrae. The sizes of the kidneys and the lengths of each section were measured (Fig. 2 and Table 1).

Renal hilum, pelvis and ureter

Both renal hila opened very widely in the ventral direction, and the left hilum was larger than the right hilum. The right pelvis consisted of six major calyces, while the left pelvis was enlarged because of the tumor. The left calyces could not be observed clearly due to the tumor. Both ureters descended from the ventral side of each kidney and penetrated normally into the bladder.

Arterial system

After passing through the aortic hiatus of the diaphragm, the aorta descended, turned slightly to the right and passed through the dorsal side of the isthmus of the horseshoe kidney. Subsequently, it diverged into the left and right common iliac arteries. The arterial system of this horseshoe kidney is shown in Fig. 3.

Fig. 1. A. Photograph showing the horseshoe kidney and its arterial system and venous system including a tumor, as viewed from the ventral side. B. Photograph showing the horseshoe kidney and its arterial system and venous system after the tumor removal, as viewed from the ventral side. Aa, abdominal aorta; Im, inferior mesenteric artery; Ivc, inferior vena cave; Lp, left pelvis; Lrv, left renal vein; Lu, left ureter; Rp, right pelvis; Ru, right ureter; Rrv, right renal vein; Rtv, right testicular vein; Sa, surplus Artery; Tm, tumor.

Fig. 2. Various measurements of the horseshoe kidney. The result of the measurements are shown in Table 1. A. Distance between the tops of the left and right kidneys. B. Distance between the aortic hiatus and the top edge of the isthmus. C. Distance between the lower edge of the isthmus and the divergent Points of the common iliac arteries. D. Width of the left kidney. E. Width of the right kidney. F. Width of the isthmus. G. Major axis of the hilum of the left kidney. H. Minor axis of the hilum of the left kidney. I. Major axis of the hilum of the right kidney. J. Minor axis of the hilum of the right kidney.

Table 1.

Results of the measurements of each region shown in Fig. 2

<table>
<thead>
<tr>
<th>Regions</th>
<th>(cm)</th>
<th>Regions</th>
<th>(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13.1</td>
<td>F</td>
<td>3.1</td>
</tr>
<tr>
<td>B</td>
<td>6.3</td>
<td>G</td>
<td>6.9</td>
</tr>
<tr>
<td>C</td>
<td>2.5</td>
<td>H</td>
<td>3.9</td>
</tr>
<tr>
<td>D</td>
<td>6.0</td>
<td>I</td>
<td>7.3</td>
</tr>
<tr>
<td>E</td>
<td>4.3</td>
<td>J</td>
<td>2.8</td>
</tr>
</tbody>
</table>
The left and right renal arteries branched from the abdominal aorta. Moreover, a surplus artery from the renal arteries and three surplus arteries from the abdominal aorta penetrated into the horseshoe kidney. The first surplus artery branched from the right renal artery and became distributed to the upper pole of the right kidney. The second surplus artery arose from the ventral side of the aorta below the origin of the superior mesenteric artery and became distributed to the inferior pole of the right kidney. The third surplus artery arose from the ventral side of the abdominal aorta below the origin of the inferior mesenteric artery and became distributed to the inferior pole of the left kidney and part of the isthmus. The fourth surplus artery branched from the left side of the abdominal aorta superior to the origin of the left renal artery and became distributed to the upper pole of the left kidney (Fig. 3 B).

Moreover, the usual celiac trunk was not identified in the present case. The splenic artery arose from the superior mesenteric artery, forming a lienomesenteric trunk, and the left gastric and common hepatic arteries, forming a gastrohepatic trunk.

Venous system

The inferior vena cava formed from the junction of the right and left common iliac veins. It ascended to the right side of the abdominal aorta behind the isthmus. In the left kidney, two veins arose from the left hilum and joined into one vein that opened into the inferior vena cava. In the right kidney, two veins arose from the right hilum and joined into one vein that opened into the inferior vena cava. Other surplus veins arose the right hilum and directly opened into inferior vena cava.

Histological observation of isthmus

In order to observe the tissue of the isthmus, some paraffin-embedded preparations of part of the isthmus were stained with H&E. Many renal corpuscles and renal tubules were observed in this area (Fig. 4). The isthmus consisted of kidney substance in the present case.

DISCUSSION

A horseshoe kidney is the most frequent disease among dysraphia of kidney. The incidence of horse-
horseshoe kidneys in Japanese is 0.15-0.48% [1-3]. Sex differences are seen, similar to other types of dysraphia, and men are twice as likely to have a horseshoe kidney than women [1,4,5]. This is the sixth case in our laboratory, representing a frequency of 0.1% (6 of 1902 bodies) from 1952 to 2001 [6].

Matsumoto et al. [2] classified horseshoe kidneys into the following five types: type A(a), fused at the superior poles; type A(b), fused at the inferior poles; type B(a), fused by fibrous tissue; type B(b), fused directly; and type B(c), fused by mediators. In the present case, the isthmus consisted of kidney substance and the extremitas inferior of both kidneys carried out the coalescence. Therefore, this case of horseshoe kidney belongs to types A(b) and B(b). Although the coalescence part is the inferior poles of the kidneys in 95% of cases, a case in which the upper poles carried out the coalescence has also been reported [7]. Similar to many old reports, in this example, the hilum opened ahead greatly [8-15].

Embryologically, the generation of a normal kidney begins in the 4-week-old embryo when the tail side of the primordial kidney upheaval carries out a coalescence to a metanephric bud, and a metanephric tissue is formed. The metanephric tissue progressively moves to the head side as the fetus grows and the pelvic organs progress. The kidneys ascended over the iliac crest in the 7-week-old embryo, and almost reach their final positions in the 9-week-old embryo. When moving in the upward direction, the kidney rotates so that the ventral aspect may be suitable inside. It is supposed that abnormalities in the coalescence of a kidney are produced when the early fetal renal capsule is still premature and the kidney is moving in the pelvis. The time when the two kidneys approach each other most closely is when they pass through the umbilical artery and get over the common iliac artery in the 4-6-week-old embryo. Therefore, when the position of these blood vessels is slightly unusual or the sacrum and coccyx are crooked on the right or left, coalescence of a kidney arises [16]. It is most likely that the inferior poles of both kidneys carry out a coalescence and form a horseshoe kidney at this time. Since such a fusion is previously produced as a kidney rotates around the long axis as the center, the renal pelvis has turned toward the ventral aspect. However, according to a recent report on 6-7-week-old embryos, the coalescence produced when the left and right kidneys merely approach each other is only applicable to some horseshoe kidneys, in which a bridge part arises from a fibroid organization, and the view that both kidneys carry out the coalescence, since the dorsal metanephric tissue showed excrescence in most cases, which have a bridge part of substance nature, is also presented [10,17].

There are many opinions that the surplus arteries observed as features of horseshoe kidneys are vestigial remnants of an embryo term [9,12,18,19]. There are many views about the cause, in which a kidney is fixed too low because the rise of the kidney is barred by the surplus arteries [13,15] and also barred by the origin of the inferior mesenteric artery or abnormal growth of the early developmental renal tissue [14,15,20].

Moreover, horseshoe kidneys show great individual arterial variations, and this is supposed to be accompanied by variation in the branches of the abdominal aorta in many cases [5]. In the present case, a rare arterial anomaly was observed in the celiac mesenteric region. The usual celiac trunk was not identified, and the gastrohepatic trunk and splenomesenteric trunk independently arose from the abdominal aorta. The classification for this type of arterial anomaly is type V” in Morita’s classification, but does not belong to Adachi’s classification [21,22].

REFERENCES

